The zoomGroupStats functions that I’ve been building over the past few months have, to date, relied heavily on the transcription that is created automatically when a meeting is recorded to the Zoom Cloud. This is an excellent option if your account has access to Cloud Recording; however, it can be an obstacle if you want meeting leaders to record their own meetings (locally) and send you the file. In a recent project, for example, I had many meeting leaders who accidentally recorded their meetings locally, which left me without a transcript of the meeting.
This week I’ve started building a set of functions to take in an audio file from a Zoom meeting (or could also take in the video file, but that is unnecessary) and output the same transcript object that the processZoomTranscript function in zoomGroupStats produces. These functions rely on AWS Transcribe and S3. There are currently just two functions — one that launches a transcription job (since these are done asynchronously) and the second that parses the output of the transcription job.
Note that these functions currently use the default segmenting algorithm in AWS transcribe. From reviewing several transcriptions, it’s not very good (in my opinion). If your work requires utterance-level analysis (e.g., average utterance length), I would consider defining your own segmentation approach. The functions will output a simple text file transcript, so you could use that to do a custom segmentation.
# transcribeZoomAudio Function
############################################################
# Zoom Audio File Processing, Function to launch transcription jobs
# This function starts an audio transcription job only == it does not output anything of use. However,
# it is useful for batch uploading audio files and starting transcription jobs for them.
# This can be done with a local file (uploads to a specified s3 bucket) or with a file that already
# exists in an s3 bucket
# example call: transcribeZoomAudio(fileLocation="local", bucketName="my-transcription-bucket", filePath="mylocalfile.m4a", jobName="mylocalfile.m4a", languageCode="en-US")
# INPUT ARGUMENTS:
# fileLocation: either "local" or "s3" - if local, then this function will upload the file to the specified bucket
# bucketName: name of an existing s3 bucket that you are using for storing audio files to transcribe and finished transcriptions
# filePath: the path to the local file or to the s3 file (depending on whether it is "local" or "s3")
# jobName: the name of the transcription job for aws -- I set this to the same as the filename (without path) for convenience
# numSpeakers: this helps AWS identify the speakers in the clip - specify how many speakers you expect
# languageCode: the code for the language (e.g., en-US)
# OUTPUT:
# None
transcribeZoomAudio = function(fileLocation, bucketName, filePath, jobName, numSpeakers, languageCode) {
require(paws)
# First, if the file location is local, then upload it into the
# designated s3 bucket
if(fileLocation == "local") {
localFilePath = filePath
svc = s3()
upload_file = file(localFilePath, "rb")
upload_file_in = readBin(upload_file, "raw", n = file.size(localFilePath))
svc$put_object(Body = upload_file_in, Bucket = bucketName, Key = jobName)
filePath = paste("s3://", bucketName, "/",jobName, sep="")
close(upload_file)
}
svc = transcribeservice()
svc$start_transcription_job(TranscriptionJobName = jobName, LanguageCode = languageCode, Media = list(MediaFileUri = filePath), OutputBucketName = bucketName, Settings = list(ShowSpeakerLabels=TRUE, MaxSpeakerLabels=numSpeakers))
}
############################################################
# processZoomAudio Function
############################################################
# Zoom Audio File Processing, process finished transcriptions
# This function parses the JSON transcription completed by AWS transcribe.
# The output is the same as the processZoomTranscript function.
# example call: audio.out = processZoomAudio(bucketName = "my-transcription-bucket", jobName = "mylocalfile.m4a", localDir = "path-to-local-directory-for-output", speakerNames = c("Tom Smith", "Jamal Jones", "Jamika Jensen"), recordingStartDateTime = "2020-06-20 17:00:00", writeTranscript=TRUE)
# INPUT ARGUMENTS:
# bucketName: name of the s3 bucket where the finished transcript is stored
# jobName: name of the transcription job (see above - i usually set this to the filename of the audio)
# localDir: a local directory where you can save the aws json file and also a plain text file of the transcribed text
# speakerNames: a vector with the Zoom user names of the speakers, in the order in which they appear in the audio clip.
# recordingStartDateTime: the date/time that the meeting recording started
# writeTranscript: a boolean to indicate whether you want to output a plain text file of the transcript
# OUTPUT:
# utterance_id: an incremented numeric identifier for a marked speech utterance
# utterance_start_seconds the number of seconds from the start of the recording (when it starts)
# utterance_start_time: the timestamp for the start of the utterance
# utterance_end_seconds the number of seconds from the start of the recording (when it ends)
# utterance_end_time: the timestamp for the end of the utterance
# utterance_time_window: the number of seconds that the utterance took
# user_name: the name attached to the utterance
# utterance_message: the text of the utterance
# utterance_language: the language code for the transcript
processZoomAudio = function(bucketName, jobName, localDir, speakerNames=c(), recordingStartDateTime, writeTranscript) {
require(paws)
require(jsonlite)
transcriptName = paste(jobName, "json", sep=".")
svc = s3()
transcript = svc$get_object(Bucket = bucketName, Key = transcriptName)
# Write the binary component of the downloaded object to the local path
writeBin(transcript$Body, con = paste(localDir, transcriptName, sep="/"))
tr.json = fromJSON(paste(localDir, transcriptName, sep="/"))
if(writeTranscript) {
outTranscript = paste(localDir, "/", jobName, ".txt", sep="")
write(tr.json$results$transcripts$transcript, outTranscript)
}
# This IDs the words as AWS broke out the different segments of speech
for(i in 1:length(tr.json$results$speaker$segments$items)){
res.line = tr.json$results$speaker$segments$items[[i]]
res.line$segment_id = i
if(i == 1) {
res.out = res.line
} else {
res.out = rbind(res.out, res.line)
}
}
segments = res.out
segment_cuts = tr.json$results$speaker$segments[,c("start_time", "speaker_label", "end_time")]
# Pull this apart to just get the word/punctuation with the most confidence
# Not currently dealing with any of the alternatives that AWS could give
for(i in 1:length(tr.json$results$items$alternatives)) {
res.line = tr.json$results$items$alternatives[[i]]
if(i == 1) {
res.out = res.line
} else {
res.out = rbind(res.out, res.line)
}
}
words = cbind(res.out, tr.json$results$items[,c("start_time", "end_time", "type")])
words = words[words$type == "pronunciation", ]
words_segments = merge(words, segments, by=c("start_time", "end_time"), all.x=T)
words_segments$start_time = as.numeric(words_segments$start_time)
words_segments$end_time = as.numeric(words_segments$end_time)
words_segments = words_segments[order(words_segments$start_time), ]
segment_ids = unique(words_segments$segment_id)
i = 1
segment_cuts$utterance_id = NA
segment_cuts$utterance_message = NA
for(i in 1:length(segment_ids)) {
utterance_id = segment_ids[i]
segment_cuts[i, "utterance_id"] = utterance_id
segment_cuts[i, "utterance_message"] = paste0(words_segments[words_segments$segment_id == utterance_id, "content"], collapse=" ")
}
if(length(speakerNames) > 0) {
user_names = data.frame(0:(length(speakerNames)-1), speakerNames, stringsAsFactors=F)
names(user_names) = c("speaker_label", "user_name")
user_names$speaker_label = paste("spk",user_names$speaker_label, sep="_")
segment_cuts = merge(segment_cuts, user_names, by="speaker_label", all.x=T)
}
names(segment_cuts)[2:3] = c("utterance_start_seconds", "utterance_end_seconds")
segment_cuts[, 2:3] = lapply(segment_cuts[, 2:3], function(x) as.numeric(x))
segment_cuts = segment_cuts[order(segment_cuts$utterance_start_seconds), ]
# Now turn these into actual datetime values
recordingStartDateTime = as.POSIXct(recordingStartDateTime)
segment_cuts$utterance_start_time = recordingStartDateTime + segment_cuts$utterance_start_seconds
segment_cuts$utterance_end_time = recordingStartDateTime + segment_cuts$utterance_end_seconds
# Create a time window (in seconds) for the utterances -- how long is each in seconds
segment_cuts$utterance_time_window = as.numeric(difftime(segment_cuts$utterance_end_time, segment_cuts$utterance_start_time, units="secs"))
# Prepare the output file
res.out = segment_cuts[, c("utterance_id", "utterance_start_seconds", "utterance_start_time", "utterance_end_seconds", "utterance_end_time", "utterance_time_window", "user_name", "utterance_message")]
# Mark as unidentified any user with a blank username
res.out$user_name = ifelse(res.out$user_name == "" | is.na(res.out$user_name), "UNIDENTIFIED", res.out$user_name)
# Add the language code
res.out$utterance_language = languageCode
return(res.out)
}