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Due to their distinctive features, multiteam systems (MTSs) face significant coordination
challenges—bothwithin component teams and across the larger system. Despite the ben-
efits of informalmechanisms of coordination for knowledge-basedwork, there is consid-
erable ambiguity regarding their effects inMTSs. To resolve this ambiguity, we build and
test theory about how interpersonal interactions amongMTSmembers serve as an infor-
mal coordination mechanism that facilitates team and system functioning. Integrating
MTS research with insights from the team boundary spanning literature, we argue that
the degree to whichMTSmembers balance their interactions with members of their own
component team (i.e., intrateam interactions) andwith themembers of other teams in the
system (i.e., interteam interactions) shapes team- and system-level performance. The
findings of a multimethod study of 44 MTSs composed of 295 teams and 930 members
show that as interteam interactions exceed intrateam interactions, team conflict arises
and detracts from component team performance. At the system level, a balance between
intrateam and interteam interactions enhances system success. Our findings advance
understanding of MTSs by highlighting how informal coordination mechanisms enable
MTSs to overcome their coordination challenges and address the unique performance
tension between component teams and the larger system.

As the industrial landscape shifted to an increas-
ingly knowledge-driven economy, early commenta-
tors (e.g., Drucker, 1999) directed attention to the
unique challenges faced by individual knowledge
workers. Subsequent scholarship (e.g., Wuchty,
Jones, & Uzzi, 2007) redirected attention to teams as
the locus of knowledge work, arguing that individual
workers alone lack the capacity needed to solve

problems of increasing scope and complexity. Most
recently, scholars (e.g., Edmondson & Harvey, 2018;
Zaccaro, Dubrow, Torres, & Campbell, 2020) have
highlighted the rising prominence of knowledge
work in multiteam systems (MTSs), which refers to
“two or more teams that interface directly and inter-
dependently in response to environmental contingen-
cies toward the accomplishment of collective goals”
(Mathieu,Marks, & Zaccaro, 2001: 290). Similar to the
shift from the individual to the team, the shift from
the team to the MTS has occurred because the com-
plexity of many modern problems exceeds the capa-
bilities of any single team (Zaccaro et al., 2020).

As MTSs seek to address complex knowledge-
based problems, theory and research have revealed
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that coordination, or “the process of interaction that
integrates a collective set of interdependent tasks”
(Okhuysen & Bechky, 2009: 463), is particularly
important—but also especially difficult—for MTS
functioning (e.g., Davison, Hollenbeck, Barnes,
Sleesman, & Ilgen, 2012; de Vries, Hollenbeck, Davi-
son, Walter, & van der Vegt, 2016; Rico, Hinsz, Davi-
son, & Salas, 2018; Shuffler & Carter, 2018).
Distributing tasks across teams offers the promise of
specialized expertise or focused effort to solve dis-
tinct elements of a larger and more complex prob-
lem, but the overall benefit to the system can only be
realized if members effectively coordinate both
within and across team boundaries. Doing so is espe-
cially difficult for MTSs because structural and psy-
chological barriers emerging from a division of
labor, specialization of expertise, and unique priori-
ties stymie the flow of information between teams
(Heath & Staudenmayer, 2000). As a function of
these barriers, scholars have highlighted interteam
coordination, in particular, as a primary contributor
to the success or failure of MTSs (e.g., DeChurch &
Marks, 2006; Firth, Hollenbeck, Miles, Ilgen, &
Barnes, 2015). Understanding how to facilitate inter-
team coordination without degrading intrateam
coordination has been a central focus of MTS
research (Rico et al., 2018; Zaccaro et al., 2020).

Theory (e.g., Katz & Kahn, 1978; Thompson, 1967)
and research (e.g., Faraj & Sproull, 2000; Van de
Ven, Delbecq, & Koenig, 1976) have highlighted
that informal coordination mechanisms—entailing
direct, mutual, and ad hoc interactions between peo-
ple (Okhuysen & Bechky, 2009)—are useful for
accomplishing collective knowledge-based work.
Given that MTSs are frequently deployed to address
such problems (Zaccaro et al., 2020), past theory and
research on coordination has seemingly suggested
that informal mechanisms would be especially help-
ful for enabling MTS effectiveness. Yet, the degree to
which informal mechanisms are beneficial or detri-
mental for MTS effectiveness remains unclear, in
part, because prior studies have largely focused on
formal structural (e.g., de Vries et al., 2016), role-
based (e.g., Davison et al., 2012), and centralized
(e.g., Lanaj, Hollenbeck, Ilgen, Barnes, & Harmon,
2013) mechanisms of coordination (Mathieu,
Luciano, & DeChurch, 2018). Moreover, the findings
of the few quantitative studies that have measured
informal coordination are ambiguous, leading to
contradictory recommendations about whether or
how MTS members should use informal mecha-
nisms to facilitate coordination (e.g., Davison et al.,
2012; Marks, DeChurch, Mathieu, Panzer, & Alonso,

2005; Mell, DeChurch, Contractor, & Leenders,
2020). Thus, while broader coordination theory and
research have generally prescribed the use of infor-
mal mechanisms for knowledge-based work, there
remains considerable inconsistency regarding the
usefulness of these mechanisms for enabling coordi-
nation inMTSs.

The purpose of this paper is to build and test the-
ory that resolves this ambiguity about how informal
coordination mechanisms—specifically, direct
interpersonal interactions among MTS members—
influence the effectiveness of MTSs engaged in
knowledge-based work. While prior MTS research
on informal mechanisms has assessed their intra-
team and interteam effects independently, MTSs
face the unique challenge of simultaneously coordi-
nating activities within and between component
teams. To address this challenge and the associated
ambiguity, we develop new insights into informal
coordination in MTSs by integrating MTS scholar-
ship with broader theory and research on activities
commonly known as boundary spanning, which
describes a “team’s actions to establish linkages and
manage interactions with parties in the external
environment” (Marrone, 2010: 914). The MTS and
boundary spanning literatures share a focus on how
team members engage with those outside of team
boundaries, which for MTS members involves inter-
team interactions. However, because they are inter-
ested in outcomes at different levels of analysis, with
MTS researchers focused principally on the system
level and boundary spanning researchers on the
team level, the theoretical bases of these literatures
emphasize different constellations of processes. We
integrate these two perspectives to derive the insight
that the degree of balance of MTS members’ intra-
team and interteam interactions shapes team pro-
cesses—specifically, team conflict—and team- and
system-level performance.

We test our theoretical model in a study of 44mul-
titeam systems, composed of 295 teams and 930
members, charged with completing a knowledge-
based engineering task over 11 weeks. Our findings
make threemain contributions to theMTS literature.
First, our focus on informal coordination extends
past studies in the MTS literature, which have
yielded ambiguous conclusions regarding informal
mechanisms (Carter, Cullen-Lester, Jones, Gerbasi,
Chrobot-Mason, & Nae, 2020; Luciano, DeChurch, &
Mathieu, 2018; Rico et al., 2018; Zaccaro et al.,
2020). Given the documented importance of within-
and between-team coordination for MTS effective-
ness (Zaccaro et al., 2020), paired with the
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documented value of informal mechanisms for other
forms of complex knowledge-based work (e.g., Faraj
& Sproull, 2000), resolving ambiguity regarding the
role of informal coordination mechanisms advances
MTS theory and offers guidance for practice. Our
findings challenge the oft-stated view that MTSs are
too large, complex, and distributed to benefit from
informal coordination (e.g., Davison et al., 2012;
Lanaj et al., 2013), calling attention to informal inter-
actions as a facilitator ofMTS effectiveness.

Second, by examining the balance of intrateam
and interteam interactions, our research takes into
account the unique performance tensions in MTSs
to help resolve ambiguity in the findings of the few
studies that have considered informal coordination
in MTSs (e.g., Davison et al., 2012; Marks et al.,
2005; Mell et al., 2020). Deriving new insights by
integrating the MTS and boundary spanning litera-
tures, our coincident consideration of intrateam and
interteam interactions enriches prior MTS research,
which has often treated within-team and between-
team dynamics as separate, additive contributors to
coordination. We also identify team conflict as a
mechanism that channels the effects of an imbalance
of intrateam and interteam interaction patterns to
team effectiveness. Even as interteam interactions
are necessary for system-level coordination, when
not balanced by corresponding intrateam interac-
tions, conflict emerges and hinders team perfor-
mance. Our joint consideration of intrateam and
interteam interactions—specifically, their balance at
the team and system levels—thus advances under-
standing of the potential “countervailing or conflu-
ent consequences of coordination processes” in
MTSs (Rico et al., 2018: 11), presenting implications
for how to overcome the performance tensions that
are inherent to MTSs (Luciano et al., 2018; Mathieu
et al., 2018).

Complementing our theoretical contributions,
attributes of our study help address limitations in
the MTS literature that scholars have recently
spotlighted (e.g., Shuffler & Carter, 2018; Zaccaro
et al., 2020), although this is not the main contribu-
tion of the paper. Our study of MTSs completing a
generative engineering task enriches the diversity of
MTS research in terms of task type (i.e., structured
vs. unstructured), interaction medium (i.e., com-
puter mediated vs. face-to-face), and size (i.e., rela-
tively small vs. large number of component teams).
Additionally, we used wearable sensors to measure
interpersonal interactions among MTS members—
an approach that scholars have advocated for assess-
ing coordination inMTSs in a fine-grained way (e.g.,

Luciano et al., 2018; Mathieu et al., 2018; Shuffler &
Carter, 2018; Zaccaro et al., 2020). Wearable sensors
enabled us not only to test our a priori hypotheses
but also to examine post hoc how different foci and
forms of interactions relate to MTS effectiveness.
Together, these hypothesized and post hoc examina-
tions suggest new directions for future research on
coordination inMTSs.

THEORETICAL DEVELOPMENT

Coordination challenges are particularly acute
within MTSs due to two of their distinctive charac-
teristics. First, the goals of an MTS are hierarchical,
with at least two levels. At the proximal level, each
component team has its own specific goals; at the
distal level, the system has a superordinate goal that
requires input from the component teams (Mathieu
et al., 2001). This goal hierarchy creates structural
interdependencies among component teams (Zac-
caro et al., 2020) and contributes to potential perfor-
mance tensions between the local component teams
and the global system as a whole (Shuffler & Carter,
2018). Second, MTS component teams are structur-
ally differentiated, with particular goals, norms, and
processes that reinforce distinctions between teams
(Luciano et al., 2018). Together, these attributes can
be barriers to simultaneously achieving coordination
in the two areas where it is necessary (DeChurch &
Marks, 2006). Intrateam coordination—the integra-
tion of activities among the members of the same
component team—is needed for teams to realize
their local, proximal goals. Interteam coordination—
the integration of activities across teams within the
system—is needed to achieve the global, distal objec-
tives of theMTS as awhole.

In trying to understand how organizations inte-
grate their activities, researchers have studied awide
range of coordination mechanisms (Okhuysen &
Bechky, 2009), which are ways that people integrate
their activities when engaged in interdependent
work. Scholars have often made a basic distinction
between coordination mechanisms that are formal
and those that are informal (e.g., Faraj & Xiao, 2006;
Van de Ven et al., 1976). Formal mechanisms are
impersonal and top–down—leaders deploy them
with little concern for the idiosyncratic attributes
and characteristics of individual members (Van de
Ven et al., 1976). Informal mechanisms, in contrast,
are personal and emerge organically; they entail
direct, mutual, and real-time adjustments between
people to facilitate the integration of their work (Van
de Ven et al., 1976). The most ubiquitous informal
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mechanism in organizations, and the focus of our
research, is interpersonal interactions—the direct,
bi-directional exchange of information between two
people (Katz & Kahn, 1978). Time spent in interper-
sonal interactions enables individuals to mutually
adjust their activities and better integrate their work.
To capture this fundamental informal coordination
mechanism, we focus our research specifically on
the duration of MTSmembers’ interactions with one
another. As MTSs must realize coordination both
within and between teams (Luciano et al., 2018), we
consider two kinds of interactions: intrateam and
interteam interactions. Intrateam interactions are
encounters among the members of the same compo-
nent team; interteam interactions are encounters
among the members of different component teams
within the sameMTS.

Due to the size and complexity of MTSs, scholars
have extolled the benefits of formal coordination
mechanisms (DeChurch & Marks, 2006; Lanaj et al.,
2013). Indeed, a review of the MTS literature reveals
that the vast majority of published studies—particu-
larly those using quantitative methods—have docu-
mented the value of various formal mechanisms for
enabling system-level effectiveness. For example,
MTS researchers have found that coordination can
be enhanced through the use of a well-defined, hier-
archical structure that features a higher-order
“integration team” (Davison et al., 2012; de Vries
et al., 2016). Researchers have also found perfor-
mance benefits from centralized a priori planning
(Lanaj et al., 2013) and pre-task formal frame of refer-
ence training (Firth et al., 2015). Overall, existing
research has clearly demonstrated the value of for-
mal mechanisms for MTS coordination and system
effectiveness.

The picture is far less clear regarding the effects of
informal coordination mechanisms on MTS func-
tioning. On the one hand, with few exceptions—like
Mell et al.’s (2020) study of information sharing—
research has rarely directly studied the interpersonal
interactions that are an informal means of coordinat-
ing activities. Rather than assessing interpersonal
interactions, past studies that have forwarded con-
clusions about informal coordination have drawn
inferences from, for example, synchronous activity
(e.g., Davison et al., 2012) or from the effects of a
multifaceted set of actionprocesses (e.g.,Marks et al.,
2005). On the other hand, papers that have alluded
to informal mechanisms inMTSs—particularly with
respect to interteam coordination—have presented
ambiguous empirical findings (e.g., Davison et al.,
2012; Mell et al., 2020), and the resulting

interpretations have suggested rather broad pessi-
mism (Rico, Hinsz, Burke, & Salas, 2017). Davison
et al. (2012: 809), for example, argued that “direct
mutual adjustment among all members in the
collective… is actually detrimental to performance
inmultiteamsystems”—a viewechoedbyLanaj et al.
(2013: 737), who asserted that “multiteam systems
are too large to support mutual adjustment among all
teammembers.”

The dearth of research on informal mechanisms in
the MTS literature and the relatively pessimistic
view of their system-level effects is perplexing given
broader theory and research on coordination in
knowledge-based work (e.g., Faraj & Xiao, 2006;
Heath & Staudenmayer, 2000; Van de Ven et al.,
1976). Outside the MTS literature, informal mecha-
nisms have been viewed as essential for enabling
coordination for information-intensive collective
tasks—tasks for which “coordination is less depen-
dent on structural arrangements and more contin-
gent on knowledge integration” (Faraj & Xiao, 2006:
1155). This body of broader theory and research sug-
gests that informal mechanisms should be especially
valuable for work that is complex, uncertain, and
interdependent (Choi, 2002), like the knowledge-
based problems thatMTSs often address.

To begin to resolve equivocality regarding infor-
mal coordination in MTSs, we propose a conceptual
model—depicted in Figure 1—that delineates how
interpersonal interactions among members influ-
ence MTS processes and outcomes. Integrating prior
findings from the MTS literature with insights from
the team boundary spanning literature (e.g., Choi,
2002), our core assertion is that how individuals bal-
ance their interpersonal interactions—between the
members of their own component team and the
members of other teams in the system—shapes
whether informal interactions help or hinder the
effectiveness of the team and system.

Informal Coordination Mechanisms and
Component Team Effectiveness

For an MTS to achieve its global system-level
objectives, the component teams within it must first
achieve their local team-level objectives. How infor-
mal mechanisms influence the internal functioning
of component teams—a topic studied extensively in
broader research on teams—has been of lesser con-
cern in the MTS literature. Instead, and reflecting
the unique characteristics of MTSs, scholars have
foremost sought to understand how to enable the
between-team coordination needed to achieve
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system-level outcomes (Carter et al., 2020; Zaccaro
et al., 2020). To formulate predictions about how
informal interactions shape component team pro-
cesses and outcomes in MTSs, we derive insights
from theory and research on team boundary span-
ning (Ancona, 1990; Marrone, 2010). From a bound-
ary spanning perspective, interteam interactions in
anMTS are one—but certainly not the only—form of
boundary spanning behavior (Marrone, 2010).
Although centered on traditional, standalone teams,
the boundary spanning literature provides comple-
mentary insights that aid in developing predictions
about how interpersonal interactions influence com-
ponent teams in MTSs. Whereas the focus of MTS
research on interteam interactions has been system-
level outcomes, the focus of boundary spanning
research on interteam interactions has been team-
level effectiveness (Marrone, 2010).

The team boundary spanning literature has put
forward a nuanced view of the effects of interteam
interpersonal interactions (Choi, 2002; Marrone,
2010). When team members venture beyond the
boundaries of their own team, they are able to secure
resources, gain support, and—importantly for the
context of MTSs—align their activities with other
organizational units (Ancona, 1990; Ancona & Cald-
well, 1992; Marrone, Tesluk, & Carson, 2007). How-
ever, it takes time and effort to seek out, engage with,
and procure resources from external teams, and it
requires internal coordination to implement or use
those resources (Marrone et al., 2007). For these
reasons, when not balanced with corresponding
internal coordination efforts, extensive boundary
spanning behavior can breed divergence in team
members’ conceptualizations of their tasks and
spark disagreements about how best to accomplish

FIGURE 1
Model of Hypothesized Relationships
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their team’s objectives (Choi, 2002; Faraj & Yan,
2009; Marrone, 2010). These symptoms are indica-
tive of intrateam conflict—unpleasant disagree-
ments among team members regarding their work
(Jehn & Bendersky, 2003)—which may serve as an
important intermediary mechanism for understand-
ing how informal mechanisms relate to component
team effectiveness in MTSs (Lanaj, Foulk, & Hollen-
beck, 2018). Although conflict can be sparked by a
range of issues—elements of a task, aspects of work
processes, or relationships among members, for
example (Jehn, Northcraft, & Neale, 1999)—it is
often experienced in a diffuse way, with one form
spilling over to others (de Wit, Greer, & Jehn, 2012).
For this reason, although task-based disagreements
can sometimes facilitate knowledge-based work,
conflict often undermines team effectiveness
because it disrupts the collective information proc-
essing (De Dreu & Weingart, 2003) that MTS mem-
bers need to integrate knowledge gained through
their interteam interactions.

To redress potential disruption, boundary span-
ning theorists have advocated that team members
balance external and internal activities (Choi, 2002;
Marrone, 2010). As they increase their boundary
spanning, team members should engage in a corre-
sponding amount of internal interaction because
effective boundary spanning “requires the transmis-
sion of resulting external information and knowl-
edge back into the team itself” (Marrone, 2010: 930).
When team members engage with one another inter-
nally, they can share new information acquired
externally and resolve potentially discrepant under-
standings of their task (Choi, 2002; Faraj & Yan,
2009; Keller, 2001). In this regard, a balanced config-
uration creates synergies between intra- and inter-
team informal coordination efforts (Choi, 2002). The
idea that external and internal activitieswork in con-
cert to influence team effectiveness has received
support in boundary spanning research on team
coordination (Faraj & Yan, 2009), learning (Bresman,
2010; Cummings & Haas, 2012; Wong, 2004), and
communication (Keller, 2001).

This core idea from the team boundary spanning
literature—that balance between external and inter-
nal activities is needed to leverage knowledge from
outside the team and avoid disruptive conflict—
serves as a grounding principle for our hypotheses
about how intrateam and interteam interactions
influence component team processes and outcomes
in MTSs. Within the unique context of MTSs, exter-
nal activities are not just beneficial, but essential
(DeChurch & Marks, 2006). The necessity of

interteam interactions does not, however, obviate
their potential costs in terms of intrateam conflict if
not appropriately balanced with intrateam interac-
tions. Following boundary spanning theory, an
excessive external focus relative to internal interac-
tions can increase role overload and undermine
team viability—two states that may breed conflict
among team members (Bresman, 2010; Bron, Ende-
dijk, van Veelen, & Veldkamp, 2018; Marrone et al.,
2007; Wong, 2004). From a boundary spanning per-
spective, this type of incongruence reflects an
“underbounded” configuration, referring to many
external interactions without the capacity to suffi-
ciently coordinate teammembers to use the requisite
knowledge and skills and achieve their own local
goals (Ancona & Caldwell, 1992). Thus, although
theory has suggested that informal mechanisms are
valuable for coordination in knowledge work, the
key insight from the boundary spanning literature
has been that a team must strike “a balance between
internal and external activities” (Choi, 2002: 187).
When interteam interactions exceed intrateam inter-
actions, MTS component teams are likely to become
embroiled in conflict.

Hypothesis 1. Imbalance between intrateam and
interteam interactions is positively related to team
conflict, such that team conflict is higher as interteam
interactions exceed intrateam interactions.

Extending this hypothesis, we propose that an
imbalance in intrateam and interteam interactions
has implications—indirectly through team conflict—
for component teamperformance. There is robust evi-
dence that conflict—especially disagreements about
how to allocate resources and disputes that are emo-
tionally charged—is detrimental for team perfor-
mance. Meta-analyses have documented that
although disagreements about ideas may be helpful
under some circumstances, team conflict generally is
negatively related to team performance (De Dreu &
Weingart, 2003; de Wit et al., 2012). Moreover, even
helpful disagreements often spill over into destruc-
tive forms of conflict (e.g., Simons & Peterson, 2000).

For MTS component teams—entities that already
face the challenge of allocating scarce resources—
time spent resolving discrepant understandings of
who is responsible for what or how the team will
complete its work is time taken away from advanc-
ing toward their local objectives. Related research on
boundary spanning similarly implicates team con-
flict as a mechanism that transmits the effects of
an imbalance between external and internal activi-
ties to team performance (Choi, 2002). Bresman
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(2010: 82), for instance, suggested that an imbalance
leads team members to view external activities as a
“waste of time,” reflecting conflict over the alloca-
tion of resources. Wong (2004: 647) argued that an
imbalance will “increase cognitive variation in
members’ beliefs about their task and how things are
done,” implicitly implicating conflict as an impor-
tant mechanism (Hinsz & Betts, 2012). Bron et al.
(2018: 454) further noted that teams that have a high
external focus and low internal focus will struggle
“to come to within-team consensus and reach deci-
sions”—a situation emblematic of team conflict.

Hypothesis 2. Imbalance between intrateam and
interteam interactions is indirectly negatively related
to team performance through team conflict.

Informal Coordination Mechanisms and
System-Level Effectiveness

Although component team effectiveness is a nec-
essary building block for MTS effectiveness, team
effectiveness alone is insufficient (Marks et al.,
2005). The teams within an MTS must also coordi-
nate their activities to realize effective system-level
performance (Luciano et al., 2018). MTS scholars
have noted that performance-enabling mechanisms
at one level—such as effective within-team coordi-
nation—may have performance-inhibiting effects at
the other level (DeChurch & Zaccaro, 2010; Shuffler,
Jim�enez-Rodr�ıguez, & Kramer, 2015). Given these
countervailing effects, “MTSsmust be aware of team
and MTS functioning at the same time to balance
needs” (Shuffler & Carter, 2018: 393).

Boundary spanning across the system can help
achieve this simultaneous awareness of the team
and system. Extending the notion of boundary span-
ning to higher forms, Marrone (2010) discussed
network boundary spanning across mutually inter-
dependent teams, such as those that compose an
MTS. Intraorganizational boundary spanning (e.g.,
Rosenkopf & Nerkar, 2001; Zhao & Anand, 2013) is a
means for the exchange and integration of knowl-
edge within a broader system. Decentralized interac-
tions between units in an organization can serve
as a “collective bridge” that enables knowledge
transfer (Zhao & Anand, 2013). Organizational units
must balance their focus, spanning their boundaries
to obtain external knowledge and engaging in inter-
nal activities to integrate it. As Choi (2002: 189)
asserted, “internal and external activities may
maintain synergistic relationships through mutual
reinforcement.”

Balancing external and internal processes to coor-
dinate information is thus likely paramount for MTS
functioning. Interpersonal interactions may be
important for coordinating laterally within and
between teams but may have opposing effects unless
sufficient attention is placed on each (Rico et al.,
2018). Disproportionately engaging in intrateam
interactions may enable component teams to per-
form at a high level independently but could contrib-
ute to a breakdown in between-team coordination.
On the other hand, favoring interteam interactions
over intrateam interactions may impede system-
level coordination because component teams will
struggle to integrate necessary changes into their
internal work (Rico et al., 2017). MTSs must have
interteam interactions to adjust at linkage points
(Mell et al., 2020) and corresponding intrateam inter-
actions to integrate these adjustments locally (Choi,
2002;Marrone, 2010).

Members of an MTS may be particularly at risk of
becoming imbalanced in their intrateam and inter-
team interactions. A primary reason that MTSs fail
to achieve their system-level objectives is insuffi-
cient coordination between teams (Mathieu et al.,
2018; Rico et al., 2017). That is, an imbalance—in
either direction—is likely problematic for an MTS
(Mathieu et al., 2018). Providing some peripheral
support for these ideas, Firth et al. (2015) found in a
study of a formal training program that the effective-
ness of between-team coordination in an MTS
depends on howwell component teams coordinated
their internal activities. Similarly, MTS researchers
studying identification have found that an overem-
phasis on either the component team or the system
can undermine system-level performance (Porck,
Matta, Hollenbeck, Oh, Lanaj, & Lee, 2019). These
findings lend credence to the idea that balance
between intrateam and interteam interpersonal
interactions serves as an informal coordination
mechanism that can enable system-level success in
anMTS.

Hypothesis 3. Controlling for component team con-
flict and performance, imbalance between intrateam
and interteam interactions is negatively related to sys-
tem performance.

METHOD

Research Setting

We tested our hypotheses in a multisource and
multimethod study of MTSs that were formed as
part of the laboratory component of a required
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undergraduate engineering course at a university on
the East Coast of the United States. Students worked
together in anMTS to design and build a Rube Gold-
berg machine—a complex, over-engineered device
that completes a trivial or mundane task. The build-
ing block of a Rube Goldberg machine is the transfer
of energy across events. For example, a marble rolls
into and knocks over a sequence of dominos, trigger-
ing the release of a helium balloon to lift a switch
that turns on a light. Within each laboratory section,
students were first organized into component teams,
and each team was charged with the goal of con-
structing a Rube Goldberg machine comprising at
least six prescribed energy transfer events. Each
component team’s Rube Goldbergmachinewas itself
one part of a larger Rube Goldberg machine assem-
bled by connecting all machines designed by the
teams within that section. Teams were assigned an
order and had to link their team’smachinewith adja-
cent teams’ machines to create a larger, system-level
Rube Goldberg machine. Thus, within each section,
the teams needed to work together interdependently
as an MTS to ensure the smooth transfer of energy
between machines and through the system to com-
plete the final goal. Throughout the 11-week course,
each team had a separate physical workstation in the
same classroom where, for roughly two hours per
week, members worked on their component Rube
Goldberg machine. Members were not restricted to
only their workstation, though; they could move
freely throughout the classroom to visit other teams’
workstations to discuss and coordinate transfers of
energy betweenmachineswithin the larger system.

This task exemplifies the challenges faced by
MTSs engaged in knowledge work, particularly in
terms of structural differentiation and hierarchical
goals. As the sample machine layout depicted in
Figure 2A shows, students formed a sequentially
interdependentMTS (Rico et al., 2018), with recipro-
cal interactions between adjacent teams. Moreover,
these teams had to complete a knowledge-based task
involving complex (multiple and varied energy
transfer events), specialized (each team developed
their own unique machine), and interdependent
(linkage between adjacent teams) requirements (Zac-
caro et al., 2020). Each component team was free to
work in idiosyncratic ways, resulting in variant
norms and routines across teams that needed coordi-
nation and integration to yield a system-level work
product. In addition, a goal hierarchy existed; each
component team needed to build its own machine
but also coordinate with other teams to achieve the
superordinate goal of building a system-level

machine. Reinforcing the goal hierarchy, students’
performance in the course was both a function of the
performance of their component team’s machine
and the performance of their section’s integrated
machine.

Sample and Data Sources

We collected data from 44 MTSs, which were
composed of 295 teams and 930 members. Teams
comprised either three or four members (M 5 3.15,
SD5 0.46), and the MTSs consisted of between four
and eight teams (M 5 6.70, SD 5 1.11). Participants
were, on average, 19 years old (SD5 1.68). The sam-
ple was predominantly male (76%) and represented
a range of ethnicities (59% White, 25% Asian, 6%
Hispanic or Latino, 5% multiethnic, 4% Black or
African American, and 1% Native Hawaiian or
Pacific Islander).

To guard against single-source and single-method
limitations (e.g., Podsakoff, MacKenzie, Lee, & Pod-
sakoff, 2003), we collected data in three ways. First,
we used self-report surveys to collect background
information during Week 1 and to assess team con-
flict during Week 8. At each time, participants
received an email inviting them to complete a web-
based survey. We received 913 completed responses
to the first survey (98% overall response rate, 100%
median team-level response rate) and 827 responses
to the second survey (89% overall response rate,
100%median team-level response rate). Second, we
used wearable sensors to measure how often partici-
pants interacted with one another. In total, 912 par-
ticipants (98% overall participation rate, 100%
median team-level participation rate) wore a sensor
during Weeks 5, 6, and 7. Third, we used trained
observers to assess the performance of the Rube
Goldberg machines, which were evaluated at the
team and system levels in Week 11. Figure 2B visu-
ally arrays these data collection sources and timings.
The findings that we report in this paper were part of
a larger data collection designed for pedagogical pur-
poses and to provide individual feedback to stu-
dents. One other paper (Graham, Mawritz, Dust,
Greenbaum, & Ziegert, 2019) has also used one vari-
able (individual dominance orientation) from this
same data collection effort. Some participants from
the data collection effort were participants in a dif-
ferent study six months later; Graham et al. (2019)
used data on students’ individual dominance orien-
tation as a baseline assessment. Although there was
aminor overlap in participants, there are no overlaps
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FIGURE 2
Empirical Method

A: Sample Layout of MTS Rube Goldberg Machine
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FIGURE 2
B: Project Timeline (in Weeks) and Data Sources
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Notes: Each component team built their local machine within a 3 foot3 2 foot area at their own separate workstation and then subsequently
connected it to adjacent teams’machines to create the overall system based on the pattern above (the particular method and location of connec-
tion between adjacent teams was determined based on mutual discussion and coordination among adjacent teams). The final energy output of
transferring sugar to a cup of coffee was completed by the last team in the system.
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in the variables used in this paper and those used in
Graham et al. (2019).

Measures

Interpersonal interactions. We operationalized
interpersonal interactions as the amount of time that
individuals spent in relative physical proximity to
one another, as assessed by using wearable Blue-
tooth sensors. Proximity is a medium throughwhich
coordination-focused interactions often occur in
organizations (Okhuysen & Bechky, 2009). Under-
girding this idea is the premise that if two people are
physically close to one another, they are likely to be
engaged in an interpersonal interaction with one
another (Bernstein & Turban, 2018; Ingram &Morris,
2007; M€uller, Meneses, Humbert, & Guenther, 2020).
Substantiating this premise, research has repeatedly
found that proximity is a valid measure of interper-
sonal interaction and collaboration in field-based
settings (e.g., Chaffin et al., 2017; Kraut, Egido, &
Galegher, 2014; Matusik, Heidl, Hollenbeck, Yu,
Lee, & Howe, 2019; M€uller et al., 2020; Parrino,
2015). Of particular relevance for our measurement
approach, researchers have used wearable Bluetooth
sensors and examined the relation between their
measurement of physical proximity and self-report
survey measures of interpersonal interactions (e.g.,
advice giving or receiving and friendship), finding
support for convergent validity (Matusik et al., 2019;
M€uller et al., 2020).

Nonetheless, because proximity assessed using
Bluetooth sensors does not consider people’s orien-
tation toward one another (e.g., whether they are
face-to-face or back-to-back), we recognize that it is
possible for two people to be physically close but not
engaged in an interpersonal interaction. It is also
possible for two people to be physically distant and
engaged in an interaction through technology (e.g.,
texting, phone calls, or web conferencing). Each of
these possibilities, as sources of measurement error,
would reduce the statistical power and result in
more conservative tests of our hypotheses (Schwab,
1980). Given Matusik et al.’s (2019) and M€uller
et al.’s (2020) guidance on understanding contextual
nuances that might influence the validity of
proximity-based measures from Bluetooth sensors,
we observed all 44MTSs in our study for at least two
hours during Weeks 1–3 of the project. In these
observations, we sought to scrutinize the use of
physical proximity as a reasonable indicator of
work-related interpersonal interactions within the
specific context of our research. Our observations

indicated that proximity did indeed correspond
with meaningful interactions in this context. When
participants varied their physical location—either
moving toward teammates at their workstation or
toward members of other teams—it was because
they sought to examine or inquire about others’
work. Participants in our context did not rely upon
digital means to interact—their colocation in the
same classroom each week rendered in-person inter-
actions the easiest means of communicating with
each other.

We assessed interpersonal interactions during
Weeks 5, 6, and 7. We chose these weeks because
they comprised the action phase when teams were
responsible for building their component machines
and designing mechanisms for transferring energy
between teams. Given prior theory and research
regarding the benefits and costs of informal coordina-
tion (e.g., Kanfer & Kerry, 2012; Mathieu et al., 2018),
it is during this phasewhenwe expected the relations
that we hypothesized to be most salient (Rico et al.,
2017). Further, boundary spanning activities were
most likely to occur and have the greatest impact dur-
ing this MTS action phase (Choi, 2002; DeChurch &
Marks, 2006; DeChurch, Burke, Shuffler, Lyons,
Doty, & Salas, 2011). This action phase—before the
MTSs in our study shifted in Week 8 to an outcome
phase to start system-wide testing of the machines
(Marks, Mathieu, & Zaccaro, 2001; Rico et al., 2017)—
thus constituted the right time for assessing informal
interactions (Mitchell & James, 2001).

We recorded physical closeness using wearable
multisensor devices (i.e., Kim, McFee, Olguin,
Waber, & Pentland, 2012). Following recent valida-
tion studies (Chaffin et al., 2017; Matusik et al.,
2019; M€uller et al., 2020), we used the raw Bluetooth
signal strength values recorded by the sensors to
assess the time that members spent interacting with
one another. Bluetooth devices regularly scan the
environment (e.g., every 25 seconds) to determine
whether other devices are available for connection.
When one device detects a second device, it records
the strength of the connection between the two devi-
ces, called the RSSI value, at that moment. Although
signal strength can be influenced by other factors
(e.g., walls made of different materials), validation
studies have found that variations in RSSI values
correspond to variations in the proximity of two
Bluetooth devices; the higher an RSSI value, the
closer in physical space the two devices are likely to
be (Matusik et al., 2019;M€uller et al., 2020).

To measure intrateam and interteam interactions,
we aggregated the markers of physically proximal
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interactions between two people to the team level.
For intrateam interactions, we calculated the num-
ber of dyadic interactions detected by the sensors
among members within the same component team.
The devices’ regular and periodic scans for other
devices indicated the amount of time that the mem-
bers of a given team were engaged with others in
their own team. To measure interteam interactions,
we calculated the number of dyadic interactions that
the sensors detected between the members of one
component team and the members of other teams in
the MTS. This indicated the time the members of
one teamwere engaged in interpersonal interactions
with others who were outside their team. To test our
system-level hypothesis, we used the system-level
mean (i.e., across teams) of these team-level meas-
ures. Appendix A details the steps we took to mea-
sure interpersonal interactions using the raw values
obtained from the sensors. Appendix B reports the
results of sensitivity analyses, which examine and
support the robustness of our findings to operation-
alizing interactions using different signal strength
values when processing the raw Bluetooth detection
information.

Team conflict. During Week 8, participants com-
pleted Jehn and Mannix’s (2001) 9-item measure of
team conflict using a 7-point scale ranging from 1
(never) to 7 (all the time). A sample item is “How
often are there disagreements about who should do
what in yourwork group?”1 Wemeasured conflict in
Week 8 because this is when team members had
worked through the goal-striving process and action
phase that theory has suggested engender conflict
(Marks et al., 2001; Rico et al., 2017). This is also the
time when conflict may be particularly detrimental
to team effectiveness (Jehn & Mannix, 2001). The
measure instructed members to rate conflict behav-
iors in the team agnostic of a specific timeframe to
allow for members to reflect back over the entirety of
the preceding action phase. We found high team-

level interitem reliability (a 5 0.94) and justification
for aggregation to the team level [median rwg(j) 5
0.91; ICC(1)5 0.21, p, 0.01; ICC(2)5 0.43] (Bliese,
2000). The relatively low ICC(2) was due to the small
size of the component teams, consisting of three to
fourmembers (Bliese, 2000).

Team performance. Instructors informed teams
in the first week of the course that team performance
would be assessed as the percentage of successful
energy transfers across the events within their Rube
Goldberg machine. A transfer was considered suc-
cessful when energy passed seamlessly from one
event to the next within the same team’s Rube Gold-
berg machine without any manual intervention by
team members. Trained observers measured compo-
nent teams’ performance across five trial runs of the
machines conducted in Week 11. We calculated
team performance as the total percentage of success-
ful within-team energy transfers across the five per-
formance trials. Component team performance
ranged from 16.67% to 100%.

System performance. Trained observers mea-
sured system performance as the rate of successful
energy transfers between component teams’
machines in the system. Between-team energy trans-
fers represented the successful execution of the
MTS’s tasks between adjacent teams in the sequen-
tially interdependentMTS (Rico et al., 2018). To suc-
cessfully transfer energy from one team to the next,
adjacent teams had to determine the precise location
in three-dimensional space (i.e., length, width, and
height) of where the transfer would occur and the
means of the transfer (e.g., a marble rolling down a
ramp from one team to another). Thismeasure of sys-
tem performance also included the final event of
transferring sugar to a cup of coffee. As with team
performance, we calculated system performance
across the five performance trials conducted in
Week 11; its rangewas 73.33% to 100%.

Controls. We used a theoretically driven approach
to select controls for inclusion in our models (Becker,
Atinc, Breaugh, Carlson, Edwards, & Spector, 2016).
In predicting team conflict and team performance, we
controlled for team familiarity (i.e., the degree to
which teammembers knew one another at the start of
the project) and team size (i.e., the number of people
on the team roster).We controlled for team familiarity
because teams with familiar members may experi-
ence less conflict and perform at a higher level than
teams with unfamiliar members (e.g., Huckman,
Staats, & Upton, 2009). We assessed familiarity using
a round robin survey item during Week 1 (i.e., “I
know this team member well” using a 7-point

1 This measure comprises three items each for task, pro-
cess, and relationship conflict. Like other field studies of
conflict (e.g., Bunderson, van der Vegt, Cantimur, & Rink,
2016; O’Neill, McLarnon, Hoffart, Woodley, & Allen,
2018), we found high, positive correlations among these
three forms of conflict (mean correlation5 0.70). Although
confirmatory factor analyses showed that a three-factor
model was better than a one-factor model (Dx2 5 569.22,
p , 0.01), our results were substantively the same across
the three different forms of conflict. To present our results
parsimoniously, we report results for the single overall
measure of team conflict.
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agreement scale) and used the mean across these
dyadic ratings to operationalize team-level familiarity
as an additive construct (Chan, 1998). We controlled
for team size because larger teams possess more
resources than smaller teams and, as a result, might
be better equipped to perform at a high level by
design (e.g., Thomas & Fink, 1963). In predicting
system-level performance, we controlled for the num-
ber of teams in the MTS, as larger systems introduce
the potential for greater complexity (Shuffler & Carter,
2018). We also controlled for average team familiar-
ity, team performance, and team conflict when pre-
dicting system-level performance. We controlled for
these variables to focus specifically on system perfor-
mance over and above team-level dynamics.2

Analyses

Central to our model is the idea that the benefits of
informal coordination mechanisms are a function of
howwell MTSmembers balance their intrateam and
interteam interactions. That is, the balance of inter-
actions, irrespective of the amount of interactions,
shapes team conflict, team effectiveness, and system
effectiveness. To test this idea, we used polynomial
regression with response surface analysis (Barranti,
Carlson, & Côt�e, 2017; Edwards, 1994; Edwards &
Parry, 1993). Whereas traditional approaches—such
as using a difference score or creating a product term
between two variables—are conceptually intuitive,
these approaches are limited in two important ways
(Edwards, 1994, 1995, 2001; Edwards & Parry, 1993).
First, interpreting statistical tests of balance effects
using these simpler approaches rests upon assump-
tions about the form of the relation among the varia-
bles that could lead to erroneous interpretations
(Edwards, 2001). Second, in contrast to the coarse
view of balance effects afforded by simpler
approaches, polynomial regression and response
surface analysis afford the ability to examine the spe-
cific form of balance effects on a criterion variable
(Edwards & Parry, 1993). Response surface analysis
involves plotting and testing the parameters from a
polynomial regressionmodel to determine the shape
of the relationship between the congruence and
incongruence of two variables and an outcome. This

is important because our first hypothesis specified
that excessive interteam interactions relative to
intrateam interactions enhance conflict.

We tested our hypotheses using a subsample of
the 295 teams comprising the 44 multiteam systems.
Wearable device hardware or system failures, simi-
lar to those documented by other researchers (e.g.,
Chaffin et al., 2017; Matusik et al., 2019), necessi-
tated excluding 22 teams for which we lacked data
on interpersonal interactions. We also excluded 5
teams thatwere outliers inmeasures of interpersonal
interactions (i.e., greater than three standard devia-
tions above the mean). We excluded these teams
because we suspected invalid measurement of inter-
actions; specifically, the sensor data from these
teams suggest that participants removed their devi-
ces and placed them in a common physical location
(M€uller et al., 2020). Including these five teams in
our hypothesis tests does not change the magnitude
or significance of the focal parameters for testing our
hypotheses. More broadly, the 27 teams that we
excluded did not differ significantly from the
remaining 268 teams with respect to team size,
familiarity, conflict, or performance.

Our hypotheses consider relationships at two lev-
els of analysis—the team level and the system level.
Because teams are nested within systems, the
team-level observations of any given system are non-
independent, which violates the assumption of inde-
pendence that underlies the calculation of standard
errors in ordinary least squares regression. To address
this in our analyses predicting team conflict and team
performance, we used clustered standard errors to
adjust for potential inflation due to nonindependence
(McNeish, Stapleton, & Silverman, 2017).

RESULTS

Tables 1 and 2 provide descriptive statistics for
and intercorrelations among study variables at the
team level and the system level, respectively.

Hypothesis 1 predicted that an imbalance between
intrateam and interteam interpersonal interactions
relates to component team conflict. Specifically, we
argued that an excess of interteam interactions, rela-
tive to intrateam interactions, increases team con-
flict. Models 3 and 4 of Table 3 provide the results of
the polynomial regression analyses used to test
Hypothesis 1. Model 3 includes controls for team
size and team familiarity; Model 4 shows the robust-
ness of the results when excluding these controls.
Following Barranti et al. (2017), we calculated four
simple slope parameters (a1, a2, a3, and a4) that

2 In subsequent sensitivity analyses, we also examined
additional controls of the number of people in each MTS
and the performance of the lowest performing team. The
significance and approximate magnitude of the focal
parameter estimates for our hypothesis tests were
equivalent.
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together reflect the shape of the three-dimensional
response surface plot depicted in Figure 3A.
Although all four parameters must be interpreted
together, of particular relevance for testing Hypothe-
sis 1 is the a3 parameter, which reflects the slope of
the line of incongruence. As Model 3 and Figure 3A
show, this parameter was significant and negative
(a3 5 20.32, p , 0.01) supporting Hypothesis 1,
indicating that team conflict increases when mem-
bers spend more time engaged in interteam interac-
tions than intrateam interactions.

Hypothesis 2 predicted that the imbalance effect
of intrateam and interteam interactions indirectly
relates to team performance through team conflict.
Table 4 provides the results of regression analyses
predicting component team performance. As shown
in Model 5 of Table 4, there was a significant nega-
tive relation between team conflict and team perfor-
mance (B 5 20.02, p , 0.01). However, there were
no significant effects of interpersonal interactions on
team performance. This suggests that the relation-
ship between interpersonal interactions and team

performance is indirect, passing through team con-
flict. To test this indirect effect, we used a block vari-
able approach with bootstrapped standard errors in
which we created weighted linear composites of the
five polynomial estimates on team conflict and per-
formance (Edwards & Cable, 2009). We then esti-
mated a path model and computed the indirect
effect of the block variables on team performance
through team conflict. Supporting Hypothesis 2, we
found that the indirect effect of imbalance of
intrateam and interteam interactions on team perfor-
mance, through team conflict, was significant
(B520.02, SE5 0.01, p, 0.05, b520.04).

At the system level, Hypothesis 3 predicted that—
above and beyond component team conflict and
performance—imbalance between intrateam and
interteam interactions is negatively related to system
performance. Table 5 presents the results of regres-
sion analyses predicting system-level performance.
As seen inModel 3 of Table 5 and depicted in Figure
3B, the relationship between interpersonal interac-
tions and system performance was curvilinear.
Directly relevant to testing Hypothesis 3, based on
the significant downward curvature along the line of
incongruence, we found that system performance
was higher when team members balanced their
engagement in interpersonal interactions with the
members of their own component team and the
members of other component teams in the MTS
(a4 5 20.07, p , 0.05). As members disproportion-
ally engaged in intrateam or interteam interactions,
resulting in an imbalance, system performance
declined. Therefore, Hypothesis 3 was supported.

Post Hoc Examinations: Leveraging the
Granularity of Data from Wearable Sensors

Following Hollenbeck and Wright (2017), who
encouraged researchers to report the findings of post
hoc analyses, we sought to extend the findings

TABLE 1
Descriptive Statistics and Correlations Among Team-

Level Variables

M SD 1 2 3 4 5

1. Team size 3.17 0.44
2. Team

familiarity
3.89 1.04 20.11

3. Intrateam
interactions

0.92 0.44 20.11 0.06

4. Interteam
interactions

0.12 0.08 20.10 20.04 0.30

5. Team conflict 2.23 0.81 0.00 0.00 20.14 0.02
6. Team

performance
0.89 0.10 0.06 20.03 20.03 0.01 20.17

Notes: Entries are bivariate correlations. n 5 268 teams nested
within 44 systems. p , 0.05 (two-tailed) for correlations greater
than |0.12| in magnitude.

TABLE 2
Descriptive Statistics and Correlations Among System-Level Variables

M SD 1 2 3 4 5 6

1. MTS size 6.66 1.12
2. Team familiarity 3.85 0.55 20.04
3. Team conflict 2.22 0.35 0.05 20.05
4. Team performance 0.90 0.05 20.21 20.03 20.36
5. Intrateam interactions 0.93 0.25 0.09 0.17 20.11 20.02
6. Interteam interactions 0.12 0.08 20.03 20.15 0.00 0.00 0.54
7. System performance 0.90 0.10 0.12 20.33 20.13 0.15 0.10 0.20

Notes: Entries are bivariate correlations. n 5 44 systems. p , 0.05 (two-tailed) for correlations greater than |0.30| in magnitude.
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reported above by leveraging the granularity of our
sensor data to gain further insights into informal
coordination in MTSs. As an overarching structure
for this effort, we drew from Mathieu et al. (2018),
who organized research on coordination in MTSs by
considering functions, foci, forms, and phases. Our
hypotheses considered how interpersonal interac-
tions are an informal coordination mechanism in
MTSs—that is, we examined the function of inter-
personal interactions. Informed by our results, we
developed post hoc predictions and conducted anal-
yses examining how differing foci of interactions
(i.e., the specific targets of informal coordination)
and differing forms of interactions (i.e., the structure
of who is interacting with whom) relate to MTS
effectiveness. While these analyses allow for a richer
examination of informal coordination with foci and
forms complementing functions, the sensor data,
which we collected during a single period of the pro-
ject, did not permit examining the phases compo-
nent ofMathieu et al.’s (2018) framework.

Examining different coordination foci. Mathieu
et al. (2018) referred to the different targets of coordi-
nation efforts in an MTS as foci. Our hypotheses dif-
ferentiated between two broad foci—intrateam
interactions and interteam interactions. However,
the sequential nature of the project completed by the

MTSs in our study may have rendered some inter-
team interactions more important for MTS effective-
ness than others. As Figure 2A depicts, teams that
are adjacent to one another in theMTSs that we stud-
ied (e.g., Team 3 with adjacent Teams 2 and 4) must
directly integrate their machines for the system to
function. Building from Rico et al.’s (2018) frame-
work and our findings on the function of interper-
sonal interactions, we might expect that informal
interactions between adjacent teams aremore impor-
tant than interactions between nonadjacent teams
(e.g., Team 3 with nonadjacent Team 5). Rico et al.
(2018) highlighted the need for explicit coordination
processes, such as direct communication and inter-
actions, for how work activities between teams “fit
together” (Rico et al., 2018: 337), whichmay be espe-
cially valuable for adjacent teams due to sequential
interdependence. We therefore suggest that interper-
sonal interactions are particularly beneficial to team
and MTS success when the interteam foci are adja-
cent teams compared to nonadjacent teams.

To examine whether the imbalance effects that we
hypothesized differ depending onwhether teams are
proximal in the flow of work, we assessed how
muchmembers interacted with the members of adja-
cent versus nonadjacent teams. Using sensor data,
we calculated adjacent and nonadjacent interteam

TABLE 3
Results of Team-Level Analyses Predicting Team Conflict

Model 1 Model 2 Model 3 Model 4

B SE B SE B SE B SE

Intercept 2.228 (0.06) 2.407 (0.14) 2.298 (0.08) 2.298 (0.08)
Team size 20.003 (0.11) 20.020 (0.11) 20.022 (0.12)
Team familiarity 20.001 (0.04) 0.008 (0.04) 0.000 (0.04)
Intrateam interactions 20.290 (0.14) � 20.142 (0.06) � 20.141 (0.06) �
Interteam interactions 0.738 (0.76) 0.174 (0.07) � 0.175 (0.07) �
Intrateam interactions2 0.030 (0.04) 0.030 (0.04)
Intrateam 3 Interteam interactions 0.010 (0.05) 0.009 (0.05)
Interteam interactions2 20.103 (0.05) � 20.103 (0.05) �
Response Surface Parameters
a1 0.032 (0.09) 0.034 (0.09)
a2 20.063 (0.06) 20.063 (0.06)
a3 20.316 (0.08) �� 20.316 (0.08) ��
a4 20.083 (0.10) 20.082 (0.10)
Overall Model
F 0.000 1.310 1.919 † 2.699 �
R2 0.000 0.020 0.049 0.049

Notes: n 5 268 teams nested in 44 systems. Entries are unstandardized parameter estimates, with clustered standard errors in
parentheses. Tests are two-tailed.

† p , 0.10
� p , 0.05
�� p , 0.01
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FIGURE 3
Response Surface Plots

A: Response Surface Plot Predicting Team Conflict
B: Response Surface Plot Predicting System Performance

1.00

0.95

0.90

0.85

0.80

0.75

4

5

3

T
ea

m
 C

on
fl

ic
t

S
ys

te
m

 P
er

fo
rm

an
ce

2

1

2 2

0

-1
-1

0
1

2

-2 -2

Interteam Interactions

Interteam InteractionsIntrateam Interactions

Intrateam Interactions

1

0

-1

-2
-1

0
1

12

-2

TABLE 4
Results of Team-Level Analyses Predicting Team Performance

Model 1 Model 2 Model 3 Model 4 Model 5

B SE B SE B SE B SE B SE

Intercept 0.892 (0.01) 0.895 (0.01) 0.886 (0.01) 0.886 (0.01) 0.935 (0.02)
Team size 0.013 (0.01) 0.013 (0.01) 0.012 (0.01) 0.011 (0.01)
Team familiarity 20.002 (0.01) 20.002 (0.01) 20.001 (0.01) 20.001 (0.01)
Intrateam interactions 20.006 (0.02) 20.003 (0.01) 20.003 (0.01) 20.006 (0.01)
Interteam interactions 0.027 (0.09) 20.005 (0.01) 20.005 (0.01) 20.001 (0.01)
Intrateam interactions2 0.000 (0.00) 0.000 (0.00) 0.001 (0.00)
Intrateam 3 Interteam interactions 0.005 (0.01) 0.005 (0.01) 0.005 (0.01)
Interteam interactions2 0.004 (0.00) 0.004 (0.00) 0.002 (0.00)
Team conflict 20.021 (0.01) ��
Response Surface Parameters
a1 20.008 (0.01) 20.009 (0.01) 20.007 (0.01)
a2 0.010 (0.01) 0.010 (0.01) 0.008 (0.01)
a3 0.002 (0.02) 0.002 (0.02) 20.005 (0.02)
a4 0.000 (0.01) 20.001 (0.01) 20.002 (0.01)
Overall Model
F 0.630 0.34 0.446 0.478 1.289
R2 0.000 0.000 0.012 0.009 0.039

Notes: n 5 268 teams nested in 44 systems. Entries are unstandardized parameter estimates, with clustered standard errors in
parentheses. Tests are two-tailed.

† p , 0.10
� p , 0.05
�� p , 0.01
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interactions by aggregating dyadic interactions
among MTS members according to the same
approach previously described for interteam interac-
tions. We demarcated whether a given interaction
comprised the members of teams that were next to
one another in the MTS (i.e., adjacent interteam
interactions) versus teams that were separated by at
least one other team (i.e., nonadjacent interteam
interactions). Using this distinction, we re-ran
Model 3 from Table 3, predicting team conflict sepa-
rately for adjacent and nonadjacent interteam inter-
actions. Similar to our a priori findings, we observed
an imbalance effect for nonadjacent interteam inter-
actions (a3520.34, SE5 0.08, p, 0.01). As imbal-
ance increased, with interteam interactions with
nonadjacent teams exceeding intrateam interactions,
team conflict increased. The imbalance effect was
negative but nonsignificant, however, for interac-
tions with adjacent teams (a3 5 20.12, SE 5 0.10,
p. 0.10). Conflict did not significantly rise as inter-
team interactions with adjacent teams exceeded
intrateam interactions. At the system level, we
re-ran Model 3 from Table 5, predicting system per-
formance separately for adjacent and nonadjacent
interactions. Like the team level, the imbalance
effect differed for these two types of interteam inter-
actions. The imbalance of nonadjacent interteam

and intrateam interactions was significant and nega-
tively related to system performance (a4520.06, SE
5 0.03, p , 0.05). The effect was not significant,
however, for adjacent interteam interactions (a4 5
20.06, SE 5 0.05, p . 0.10). Taken together, these
post hoc findings suggest that it is important for
researchers to consider the specific foci of informal
coordination. The detrimental effects of imbalance
that we reported in our hypothesis tests are espe-
cially pronounced when the interpersonal interteam
interactions are with nonadjacent teams with which
the focal team does not directly integrate in the
system.

Examining different coordination forms.
Mathieu et al. (2018: 338) used the term “form” to
describe “the structure (e.g., boundary spanners,
members, centralized, decentralized) of who in the
MTS enacts the coordination functions.” In our
hypotheses, we considered interteam interactions
agnostic to whether they were broadly distributed
across team members—such that all members
engaged in similar amounts of interactions with
those outside the team—or concentrated in a single
member. Although some MTS research has sug-
gested that interteam interactions are best accom-
plished by a formally designated liaison (e.g.,
Davison et al., 2012), other MTS findings have

TABLE 5
Results of Regression Analyses Predicting System Performance

Model 1 Model 2 Model 3 Model 4

B SE B SE B SE B SE

Intercept 0.896 (0.01) 0.854 (0.06) 0.938 (0.02) 0.922 (0.02)
System size 0.012 (0.01) 0.012 (0.01) 0.013 (0.01)
Team familiarity 20.057 (0.03) � 20.056 (0.03) † 20.078 (0.02) ��
Team performance 0.267 (0.34) 0.278 (0.35) 0.316 (0.30)
Team conflict 20.030 (0.04) 20.027 (0.04) 20.056 (0.04)
Intrateam interactions 0.025 (0.07) 20.004 (0.01) 20.009 (0.02)
Interteam interactions 0.159 (0.23) 0.025 (0.02) 0.031 (0.02)
Intrateam interactions2 20.043 (0.01) �� 20.025 (0.02) †

Intrateam 3 Interteam interactions 0.014 (0.02) 0.009 (0.02)
Interteam interactions2 20.008 (0.01) 20.006 (0.01)
Response Surface Parameters
a1 0.022 (0.02) 0.023 (0.02)
a2 20.036 (0.02) † 20.022 (0.02)
a3 20.029 (0.03) 20.040 (0.03)
a4 20.065 (0.03) � 20.041 (0.03)
Overall Model
F 1.820 1.410 2.078 † 0.911
R2 0.160 0.190 0.355 0.107

Notes: n 5 44 systems. Entries are unstandardized parameter estimates, with standard errors in parentheses. Tests are two-tailed.
† p , 0.10
� p , 0.05
�� p , 0.01
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indicated that teamsmay benefit fromhaving several
members engage in these activities (e.g., DeChurch &
Marks, 2006;Mell et al., 2020). This ambiguity is fur-
ther reflected in the boundary spanning literature in
which the question of whether external interactions
are “best reserved for only a single team member or
leader” remains unresolved (Marrone, 2010: 931).

Given these differing possibilities, we leveraged
our sensor data to examine coordination forms as the
concentration of interteam interactions in a compo-
nent team—the degree to which a team channeled
interteam interactions through a subset of team
members—might influence the functional value of
informal interactions. To do so, for each MTS mem-
ber, we first pooled the dyadic interteam interactions
of that individual to create a measure of how much
they interacted with the members of other teams.
Then, we calculated the coefficient of variation for
each team—a metric that captures concentration in
terms of how much more a person engages in inter-
team interactions compared to the other members of
their team (Harrison & Klein, 2007).

To examine the effect of the form of informal coor-
dination, we replaced the general measure of inter-
team interactionswith thismeasure of concentration
and re-ranModel 2 fromTable 3 to predict team con-
flict. Consistent with our earlier results, which did
not consider concentration, we found that intrateam
interactions were significantly negatively related to
team conflict (B 5 20.26, SE 5 0.11, p , 0.05).
Although the coefficient was negative, concentration
of interteam interactions was not significantly
related to team conflict (B 5 20.10, SE 5 0.18, p .
0.10). Also at the team level, we re-ranModel 2 from
Table 4, predicting team performance by replacing
interteam interactions with concentration. There
was a positive relationship between concentration of
interteam interactions and team performance (B 5
0.04, SE 5 0.02, p 5 0.05). Teams where interteam
interactions were more concentrated in a single
member, as opposed to more equally distributed
across members, performed better. These findings
suggest that the form of coordination does not influ-
ence team conflict; however, concentrating bound-
ary spanning efforts could have direct benefits for
the performance of teams embedded within anMTS.
Extending these analyses, we considered how the
average concentration of component teams might
influence system-level performance by re-running
Model 2 of Table 5 but substituting the interteam
interactions measure with the system-level mean of
concentration of interteam interactions. The general
tendency for teams to concentrate their interteam

interactions was not related to system-level perfor-
mance (B5 20.07, SE5 0.05, p. 0.10), controlling
for component team performance. Finally, to exam-
ine the robustness of the results of our a priori
hypothesis to concentration, we included this con-
centration measure as a control variable in our prior
analyses. The hypothesis test results were robust to
the inclusion of concentration in the models. These
post hoc analyses with regard to the form of informal
coordination suggest that concentrating interteam
interactions within a subset of team members may
have benefits for team performance that are not
transmitted through team conflict. Moreover, these
benefits do not seem to come at the cost of system
performance.

DISCUSSION

Because of their unique properties—including
hierarchically nested goals and structural differenti-
ation—MTSs face unique coordination challenges
(DeChurch & Marks, 2006; Zaccaro et al., 2020).
Findings from our study resolve conceptual and
empirical ambiguities regarding how informalmech-
anisms enable or inhibit coordination and thus influ-
ence MTS team and system effectiveness. Our
conceptual model and empirical findings reveal that
interpersonal interactions between the members of
different component teams must be accompanied by
a balanced amount of internally focused interactions
amongmembers of the same team for anMTS to ben-
efit from informal interactions. This has implica-
tions forMTS theory and practice.

Theoretical Contributions and Implications for
Future Research

Our research suggests that the pessimistic views
about informalmechanisms in pastMTS scholarship
(e.g., Lanaj et al., 2013), compounded by ambiguous
past empirical findings (e.g., Davison et al., 2012;
Mell et al., 2020), may have undersold the potential
utility for informal coordination to help MTS mem-
bers overcome their unique challenges. Past empiri-
cal research on MTSs, which has considered the use
of informal mechanisms within and between teams
as independent factors, has indicated that informal
coordination can be both detrimental (Davison et al.,
2012) as well as beneficial (Mell et al., 2020) to
MTS functioning. By integrating insights from the
boundary spanning literature, we proposed that it
is necessary to consider informal mechanisms
within and between teams in concert, rather than as
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independent factors. The core insight that emerges
from our research is that balance—manifested in the
correspondence of intrateam and interteam interac-
tions—serves a beneficial coordination function that
enables effectiveness at both the team and system
levels inMTSs.

At the team level, balanced interactions reduce
the occurrence of team conflict, which, we find,
undermines component team performance. Conflict
is most likely to emerge and detract from perfor-
mancewhen a component team engages in interteam
interactions that exceed intrateam interactions. Our
conceptual model and findings also indicate that
balanced interpersonal interactions serve a valuable
coordination function at the system level. MTS effec-
tiveness is highest when interteam interactions,
which our theory suggests help to integrate activities
across teams, are accompanied by corresponding
and similar levels of intrateam interactions, which
we argue enable team members to adjust their local
activities in response to external information.
Although these ideas align with past boundary span-
ning theory (e.g., Choi, 2002), we did not directly
measure system-level knowledge transfer mecha-
nisms. As such, future research is needed to docu-
ment precisely how informal interactions shape the
flow of information between and within teams in
MTSs.

Our findings regarding balance reinforce the need
to jointly consider effects at the team and system lev-
els to more fully understand how to navigate inher-
ent coordination challenges within MTSs. The idea
of a “performance tension” in MTSs—a tension
between component teams and the overarching sys-
tem—is a common thread running throughout the
MTS literature (e.g., Luciano et al., 2018). Yet, only a
handful of MTS studies have separately conceptual-
ized and tested performance effects at the team and
system levels of analysis (e.g., DeChurch & Marks,
2006; Mell et al., 2020). Building from the boundary
spanning literature and the need for balance, our
findings indicate that MTS members can neither
maximize within-team coordination or between-
team coordination to realize their objectives. Instead,
the side-by-side comparison of effects at the team
and system levels in Figure 3 illustrates the need for
balanced interpersonal interactions in MTSs. Teams
in the region of Figure 3A that overly emphasize
interteam interactions have elevated levels of team
conflict, which is related to lower levels of team per-
formance. However, acting to minimize component
team conflict by focusing entirely on intrateam inter-
actions is not the answer within the unique context

of MTSs. As Figure 3B illustrates, there are major
consequences for system-level performance when
teams engage in an incongruent pattern of informal
interpersonal interactions. Instead, to address the
tension for simultaneously achieving team-level and
system-level performance, MTS members should
seek balance to integrate interteam interactions with
corresponding intrateam interactions.

The findings of our post hoc analyses, however,
suggested that this interplay between the team and
the system, and their underlying mechanisms, may
be even more nuanced than we initially proposed.
Rather than treating other component teams as a sin-
gular and undifferentiated external focus of coordi-
nation efforts, we found that that it is useful to
differentiate the foci of interaction patterns and coor-
dination efforts between external teams based on the
level of direct interdependence. These findings
could also point to the potential value of both formal
and informal coordination mechanisms for MTSs—
at the very least for the kind of sequential MTSs that
we studied. Formal coordination mechanisms, such
as planning or training, could focus MTS members’
informal coordination efforts specifically on those
linked teams (i.e., teams adjacent in the workflow)
with whommutual adjustments are most likely to be
needed for system-level success. Recognizing that
our findings regarding adjacent and nonadjacent
teams were post hoc, further research is needed to
better understand this distinction.

To be clear, althoughwe find that informalmecha-
nisms serve an important coordination function in
MTSs, our work does not call into question the value
of formal mechanisms or test the relative benefits of
informal versus formal mechanisms for enabling
coordination in MTSs. Indeed, several prior MTS
studies have directly tested and found positive
effects of a range of formal mechanisms for enabling
coordination (Zaccaro et al., 2020). The purpose of
our research was to resolve ambiguity about whether
informal mechanisms could also serve a valuable
coordination function within MTSs, as identified
by both classic coordination theorists (e.g., Van de
Ven et al., 1976) and scholars who have studied
knowledge-based teams (e.g., Faraj & Sproull, 2000).
Considering our findings alongside research that has
examined formal mechanisms, though, highlights a
particularly promising direction for future MTS
research: studying the intersection of formal and
informal mechanisms of coordination. Because for-
mal and informal mechanisms are not mutually
exclusive (Katz & Kahn, 1978; March & Simon,
1958), they could function together in additive,
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synergistic, or even incompatible ways. For exam-
ple, it is possible that informal interactions enable a
well-defined structure and role system to adapt to
unexpected events or cope with a transient work-
force. Research on organizations that face related
coordination challenges hints at the value of adopt-
ing semi-structured mechanisms—ones that are nei-
ther exclusively formal nor exclusively informal
(e.g., Bechky, 2006; Bechky & Okhuysen, 2011;
Bierly & Spender, 1995; Brown & Eisenhardt, 1997).
Considering our post hoc findings on coordination
forms and the potential value for component teams,
but not systems, of concentrating informal interac-
tions, such semi-structured approaches may provide
agility that helps MTSs respond to coordination
challenges. It is also possible, however, that an
excessive reliance on informal interactions could
dilute the efficiency and clarity of formal design
and planning, contributing to breakdowns. Future
research is needed to answer these questions.

Finally, while our findings highlight the impor-
tance of balance, we did observe some indication
that it may also be important to consider the absolute
level of members’ interactions with one another. In
particular, the a2 parameter in Model 3 of Table 5,
which indicates how the effect of balance changes
across different levels of corresponding intrateam
and interteam interactions, approached significance
for system performance. As depicted in Figure 3B,
this inverted-U shaped relationship suggests that,
when balanced, increasing levels of intra and inter-
team interactions are valuable for system perfor-
mance until an inflection point is reached whereby
additional interactions begin to detract from system
performance. Examining the volume of informal
interactions could thus be a useful avenue for future
MTS research.

Practical Implications

Our findings have actionable implications for
organizations, given the nature of interdependence
within and across teams inMTSs. Although the vari-
ance in performance across MTSs may be small, as
was the case in our study, errors committed by any
one component team can ripple throughout and
undermine the entire system. A failure of one team
can cause the entire system to fail given the interde-
pendent nature of MTSs (Zaccaro et al., 2020). More-
over, the costs of coordination breakdowns in MTSs
can be extraordinary. NASA, for example, suffered
hundreds of millions of dollars in losses due to coor-
dination breakdowns in an MTS working on the

Mars Climate Orbiter (Shuffler & Carter, 2018). Our
results speak to the benefits of effectively balancing
intrateam and interteam interactions to achieve
coordination and avoid such costly errors, especially
in MTSs focused on knowledge work. The opera-
tionalization of performance in our study—the reli-
ability of a machine—closely parallels the kinds of
metrics that many knowledge-basedMTSs (e.g., soft-
ware development, mechanical engineering, etc.)
rely on to assess the quality of their work. Con-
versely, the inverse of this measure—the error or
defect rate of a machine—has implications for the
avoidable costs that organizations seek to minimize
as defects compound across levels (Lei, Naveh, &
Novikov, 2016). One error within or between teams
can ripple through and destabilize the overallMTS.

Our results suggest that the benefits of effectively
balancing informal interactions could be substantial
given the downstream impact of focusing too much
on either intrateam or interteam interactions. For
each additional point of team conflict, the error rate
for the component teams’ machines increases by
approximately 2%. At the system level, imbalanced
systems can have error rates approximately twice as
high in comparisons to systems that balance intra
and interteam interpersonal interactions. This differ-
ence is practically meaningful as even a 2% reduc-
tion in a product’s defect rate is consequential for a
modern knowledge-basedMTS (Goodman, Ramanu-
jam, Carroll, Edmondson, Hofmann, & Sutcliffe,
2011). Thus, although the variance explained in our
analyses may seem relatively small, our findings
regarding the need forMTSmembers to balance their
interactions still offer consequential managerial
insights.

Given this importance of balance for MTS func-
tioning and performance, our findings indicate that
MTS coordination efforts are aided when leaders
and members consciously manage interpersonal
interactions with regard to whom they interact with
and how much time they devote internally and
externally. While interteam interactions are neces-
sary for coordinating across teams, team members
need to ensure that these external interactions are
coupled with at least a similar level of intrateam
interactions to integrate new information within a
team. Our post hoc analyses further suggest that
members should focus these external interactions
with members of those teams they integrate directly
with in the system. In addition, teams but not sys-
temsmay benefit from concentrating these boundary
spanning efforts in a subset of team members. Social
network analysis is one practical tool that may aid
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MTS managers in monitoring and altering informal
interactions within and between teams so that they
are kept in balance (e.g., Leonardi & Contractor,
2018). Tools for tracking employee interactions
through email, chat, and asynchronous messages
could be specifically deployed to help MTS mem-
bers maintain an appropriate balance in their infor-
mal interactions.

Limitations

Our work has limitations due to the research con-
text and sample. Given the nature of sequential
MTSs, the workflow is from one team to another in a
linear fashion; however, the interactions between
adjacent teams are also reciprocal in that adjacent
teams need to coordinate between each other for suc-
cessful handoffs and transfers (Rico et al., 2018). As
such, our results are generally limited to this type of
MTS structure, and more research is needed to deter-
mine how they generalize to other types of structures
such as intensive forms of interdependence (Rico
et al., 2018). Further, we examined a sample of stu-
dents studying to become engineers in a U.S. univer-
sity, which may limit the generalizability of our
findings to organizations as well as cross-cultural
contexts. However, this sample allowed multiple
forms ofmeasurement (sensors, surveys, and observa-
tions) acrossmultiple time points and also provided a
standardized task across multiple MTSs that
enhanced internal validity (DeChurch & Marks,
2006). These benefits have similarly been noted in
prior MTS research using targeted samples, such as
Air Force trainees completing a simulation (e.g., Davi-
son et al., 2012) or undergraduate students complet-
ing a simulation (Porck et al., 2019). Further, the
sample enabled us to examine the implications of
interpersonal interactions within larger MTSs than
prior studies, which have tended to focus on smaller
systems of two or three component teams. While our
sample contains a comparatively larger number of
teams per system (nearly seven teams on average) rel-
ative to prior quantitative research, the system-level
sample size of 44 limits statistical power in our statis-
tical analyses. Finally, the task structure enabled us
to model interdependencies characteristic of MTSs,
including a goal hierarchy and structural differentia-
tion. Nonetheless, the generalizability of this task is
unclear. Future research should examine informal
coordination in other cultural contexts, organiza-
tional contexts, and in larger samples to better under-
stand their role inMTSs.

While we believe sensors are an advantageous way
of assessing interpersonal interactions, there are sev-
eral potential limitations with this approach. In par-
ticular, we operationalized interaction as a quantity
of time spent in close physical proximity. However,
we could not assess the quality of the interactions
among MTS members, nor were we able to measure
the content of team members’ interactions. Supple-
menting a quantity-based approach with a quality
and content focus would further elucidate the nature
of interactions in MTSs, such as valuable learning
functions within and between teams. Further, while
we assessed interactions during a key action phase of
the MTS lifecycle that is especially relevant for exter-
nal interactions and team processes (DeChurch &
Marks, 2006), it would also be useful to examine
interactions during transition phases. We were
unable to do so because of incomplete sensor
data over this time, but a fuller examination across
the lifecycle of an MTS would enhance understand-
ing of coordination phases (Mathieu et al., 2018).
This issue of timing also relates to our measurement
of conflict after the action phase and sensor measure-
ment of interactions. It is possible that there are
recursive relations between conflict and interper-
sonal interactions, such that conflicts arising from
an initial imbalance in intrateam and interteam
interactions spurs a change in members’ interaction
patterns. In this regard, in spite of assessing con-
structs at multiple time points, we were unable to
establish causality given our methodology. Research
is needed, perhaps leveraging computational model-
ing or experimental designs, to examine how cycles
of informal coordination emerge in MTSs across
time and their causal effects on conflict and
performance.

Our hypothesis regarding system-level perfor-
mance presumed that knowledge exchange is a
mechanism stemming from congruence in intrateam
and interteam interactions. While we did not
directly measure this system-level mechanism,
Argote and Ingram (2000) noted that interactions
among members are a potent mechanism for trans-
ferring knowledge. A more in-depth examination of
knowledge sharing, acquisition, and assimilation
processes within MTSs is needed, especially at the
system level. Future research should examine
system-level mediating mechanisms, such as knowl-
edge transfer and interteam conflict, to attempt to
mirror our findings at the team level. Future research
could also examine the connections among these
interactions and knowledge transfer to learning and
performancewithin theMTS context.
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CONCLUSION

Our study highlights the role of informal coordina-
tion mechanisms for overcoming performance
tensions in MTSs. For knowledge-based MTSs, bal-
anced informal interpersonal interactions—when
intrateam interactions correspond to interteam inter-
actions—provide an informal coordination mecha-
nism. When interactions are unbalanced, they
engender conflict that threatens team and ultimately
MTSperformance. Our findings invite renewed atten-
tion to the potential role of informal mechanisms for
enabling coordinationwithin the context ofMTSs.
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APPENDIX A
PROCEDURE FOR PROCESSING BLUETOOTH

SIGNAL DETECTION DATA

Overview of Measurement Procedure
The wearable multisensor devices (i.e., Kim et al.,
2012) we utilized have been used in other studies of
teams (e.g., Bernstein & Turban, 2018; Parker,

Cardenas, Dorr, & Hackett, 2018). The devices com-
prise infrared sensors, microphones, an accelerome-
ter, and Bluetooth technology and were
accompanied by proprietary software used to pro-
cess sensor output (Kim et al., 2012). Although
recent papers have raised important questions about
the quality of some of the measures derived from
these sensors (e.g., Chaffin et al., 2017, Kayhan,
Chen, French, Allen, Salomon, & Watkins, 2018),
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validation efforts have also suggested that the Blue-
tooth sensors in the devices can yield a valid mea-
sure of physical proximity if researchers use the raw
signal information that the sensors record, rather
than derivative metrics output by the software (Chaf-
fin et al., 2017; Matusik et al., 2019; M€uller et al.,
2020).

We took several steps to reduce the likelihood of
systematically biased measures of interpersonal
interactions in MTSs. First, to guard against the
potential for individual devices to systematically
vary in their sensitivity to physical proximity (i.e.,
Chaffin et al., 2017), we randomly assigned devices
to individual participants on a week-by-week basis.
Second, we retrieved and used the raw Bluetooth
detection data, which records any instance when
two Bluetooth sensors detect one another and estab-
lish a connection. The strength of the signal serves as
the key indicator of physical proximity and was the
basis of our operationalization of interpersonal inter-
actions (Chaffin et al., 2017; Matusik et al., 2019;
M€uller et al., 2020). Third, we adopted a threshold-
based approach for determining whether a Bluetooth
signal detection event constituted an interpersonal
interaction. Consistent with Matusik et al. (2019), we
considered a range of signal strength values (i.e.,
291 to 269) as potential thresholds for determining

whether a given detection event constituted an inter-
action. We report results using a threshold value of
280—the value at the midpoint of the signal strength
range that we considered. Appendix B provides the
results of sensitivity analyses used to assess the
degree to which our findings were dependent on a
particular threshold value. The results of these anal-
yses build confidence in the robustness of our find-
ings to a particular threshold.

Sample Dataset Excerpt Used in Exam-
ple Below
Using the example in Table A1, we explain below
the process that we used to calculate intrateam and
interteam interactions.

Step 1: Retrieve Bluetooth Signal Data
We retrieved and used the raw Bluetooth detection
data. This raw dataset records any instance when
two Bluetooth sensors detect one another and estab-
lish a connection. Because the Bluetooth device con-
ducts a scan for other devices once every 25 seconds,
the count of signal detection events provides an indi-
cation of the amount of time that two badges are
proximal to one another. For any signal detection
event, the raw dataset includes an indication of
which two badges detected one another, a timestamp
to indicate when the detection occurred, and an indi-
cator of the signal strength (i.e., RSSI value) for the

TABLE A1

a_team_id a_indiv_id b_team_id b_indiv_id detection_time rssi t_91 t_90 t_89 t_88 t_87 t_86 t_85 t_84

1 1 1 2 2019-01-01 10:00:05 272 1 1 1 1 1 1 1 1
1 1 1 2 2019-01-02 10:00:30 273 1 1 1 1 1 1 1 1
1 1 1 2 2019-01-03 10:00:55 272 1 1 1 1 1 1 1 1
1 1 1 3 2019-01-03 10:15:25 279 1 1 1 1 1 1 1 1
1 1 1 3 2019-01-03 10:15:50 278 1 1 1 1 1 1 1 1
1 1 1 4 2019-01-03 10:15:25 276 1 1 1 1 1 1 1 1
1 1 1 4 2019-01-03 10:15:50 275 1 1 1 1 1 1 1 1
1 1 1 4 2019-01-03 10:16:15 276 1 1 1 1 1 1 1 1
1 1 1 4 2019-01-03 10:16:40 277 1 1 1 1 1 1 1 1
1 1 1 4 2019-01-03 10:17:05 278 1 1 1 1 1 1 1 1
1 1 2 5 2019-01-03 10:27:05 287 1 1 1 1 1 0 0 0
1 1 2 7 2019-01-03 10:27:05 277 1 1 1 1 1 1 1 1
1 1 2 8 2019-01-03 10:27:05 271 1 1 1 1 1 1 1 1
1 2 1 3 2019-01-01 10:00:05 279 1 1 1 1 1 1 1 1
1 2 1 3 2019-01-02 10:00:30 282 1 1 1 1 1 1 1 1
1 2 1 3 2019-01-03 10:00:55 283 1 1 1 1 1 1 1 1
1 2 1 3 2019-01-04 10:01:20 286 1 1 1 1 1 1 0 0
1 2 1 3 2019-01-05 10:01:45 288 1 1 1 1 0 0 0 0
1 2 2 8 2019-01-03 10:15:50 274 1 1 1 1 1 1 1 1
1 2 2 8 2019-01-03 10:15:25 272 1 1 1 1 1 1 1 1
1 3 1 4 2019-01-03 10:16:15 270 1 1 1 1 1 1 1 1
1 3 1 4 2019-01-03 10:16:40 270 1 1 1 1 1 1 1 1
1 3 2 7 2019-01-03 10:17:05 287 1 1 1 1 1 0 0 0
1 3 2 7 2019-01-04 10:17:25 289 1 1 1 0 0 0 0 0
1 3 2 7 2019-01-05 10:17:45 290 1 1 0 0 0 0 0 0
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detection. The strength of the signal provides the
indicator of physical proximity that we used to oper-
ationalize interpersonal interactions.

Step 2a: Mark Bluetooth Signal Detection
Events as Interactions Using a Given RSSI
Threshold
We adopted a threshold-based approach for deter-
mining whether a Bluetooth signal detection event
constituted an interpersonal interaction. Although
Matusik et al. (2019: 383) generally advised against
using a threshold-based approach, they also com-
mented that “perhaps there are research contexts in
which thresholding makes practical and/or theoreti-
cal sense.” A threshold-based approach is appropri-
ate in our study because the MTSs that we studied
worked collocated in a confined classroom space
and because our interest was in assessing aggregate
team- and system-level interpersonal interactions.
Following Matusik et al.’s (2019) and M€uller et al.’s
(2020) recommendations, we considered a range of
signal strength values (i.e., 291 to 269) as potential
thresholds for determining whether a given detec-
tion event constituted an interaction and adopted a
threshold value of –80 (midpoint of the signal
strength range) for our analyses. Columns t_91
through t_84 provide a sample of marking a given
Bluetooth signal detection event as an interaction at
different thresholds. As can be seen in the sample
dataset, when the absolute value of RSSI is less than
or equal to a given threshold, the corresponding t_#
variable is coded as 1; otherwise, it is coded as 0. In

our analyses, we considered a range of RSSI values
between291 and269 (inclusive).

Step 2b: Sum the Number of Marked Interac-
tions for Each Dyad Across Time and Calculate
the Number of Joint Active Minutes
The purpose of this step is to create a dyad-level
measure of how often two individuals were engaged
in an interpersonal interaction (as classified by a
given RSSI threshold). Given the reality that partici-
pants wore their sensors for varying amounts of time
(e.g., due to equipment failures, late arrivals, and
early departures), we scaled the volume of marked
interactions by the amount of time a given dyad
wore an active sensor concurrently.We first summed
the interactions within a given dyad across multiple
time points. Doing so reduces the sample dataset to
that shown in Table A2.

In addition to summing across the dyadic interac-
tions, there is also now a variable (Min) to indicate
the number of simultaneously recording minutes for
the pair’s sensors. That is, Min gives the number of
minutes time that a’s and b’s sensors were simulta-
neously in operation. This information is gleaned
from the output provided by each badge.

Step 3a: Compute Team-Level Intrateam
Interactions
The purpose of Step 3 is to aggregate the dyad-level
data to the team level. We first did so for intrateam
interactions—interactions between individuals who
belong to the same component team. For a given
team, we thus summed the interactions that took
place between individuals with the same team

TABLE A2

a_team_id a_indiv_id b_team_id b_indiv_id t_91 t_90 t_89 t_88 t_87 t_86 t_85 t_84 Min

1 1 1 2 3 3 3 3 3 3 3 3 15
1 1 1 3 2 2 2 2 2 2 2 2 20
1 1 1 4 5 5 5 5 5 5 5 5 20
1 1 2 5 1 1 1 1 1 0 0 0 17
1 1 2 7 1 1 1 1 1 1 1 1 9
1 1 2 8 1 1 1 1 1 1 1 1 12
1 2 1 3 5 5 5 5 4 4 3 3 13
1 2 2 8 2 2 2 2 2 2 2 2 12
1 3 1 4 2 2 2 2 2 2 2 2 20
1 3 2 7 3 3 2 1 1 0 0 0 9

TABLE A3

team_id t_91 t_90 t_89 t_88 t_87 t_86 t_85 t_84 Min

1 17 17 17 17 16 16 15 15 88
2 …

TABLE A4

team_id t_91 t_90 t_89 t_88 t_87 t_86 t_85 t_84 Min

1 8 8 7 6 6 4 4 4 59
2 …
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identifier. Further, we summed to the team level the
total number of minutes for these same dyadic obser-
vations. Note that the sample interaction Table A3
does not contain Team 2’s intrateam interaction
data. Were the sample to be extended, Team 2 would
similarly have values for intrateam interactions.

Our measure of team-level intrateam interactions
is a given threshold variable (i.e., t_##) divided by
Min.

Step 3b: Compute Team-Level Interteam
Interactions
Next, we computed team-level interteam interac-
tions—interactions between individuals who belong
to different component teams. For a given team, we
thus summed the interactions that took place
between individuals of the focal team with someone
with a different team identifier. Again, we summed
to the team level the total number of minutes for
these same dyadic observations. We have again
excluded Team 2’s data, which are only partially

represented in the sample dataset in Table A4. Were
the sample to be extended, Team 2 would similarly
have values for interteam interactions.

Our measure of team-level interteam interactions
is a given threshold variable (i.e., t_##) divided by
min.

Step 4: Aggregate to the System Level
To compute system-level intrateam and interteam
interactions, we calculated the system-level mean
(i.e., across teams) of the variables created in Steps
3a and 3b.

APPENDIX B
RESULTS OF ANALYSES EXAMINING

SENSITIVITY OF RESULTS TO DIFFERENT RSSI
THRESHOLD VALUES

The following tables provide the results of analy-
ses conducted to examine the sensitivity of our
results to different RSSI threshold values. M€uller

TABLE B1
Examining the Robustness of Table 3 Model 3 Predicting Team Conflict

Variable Mean SD Median Min. Max.

Intercept 2.305 0.025 2.298 2.251 2.341
Team size 20.016 0.010 20.019 20.031 20.001
Team familiarity 20.003 0.003 20.002 20.011 0.000
Intrateam interactions 20.134 0.018 20.141 20.159 20.105
Interteam interactions 0.164 0.012 0.168 0.145 0.181
Intrateam interactions2 0.011 0.021 0.022 20.026 0.033
Intrateam 3 Interteam interactions 0.006 0.010 0.008 20.010 0.020
Interteam interactions2 20.090 0.013 20.092 20.106 20.052
a1 0.030 0.010 0.034 0.007 0.041
a2 20.073 0.021 20.065 20.108 20.030
a3 –0.299 0.029 –0.315 –0.338 –0.250
a4 20.084 0.036 20.083 20.129 20.011

TABLE B2
Examining the Robustness of Table 4 Model 5 Predicting Team Performance

Variable Mean SD Median Min. Max.

Intercept 0.936 0.004 0.935 0.930 0.942
Team size 0.011 0.001 0.011 0.009 0.012
Team familiarity 20.001 0.000 20.001 20.002 20.001
Intrateam interactions 20.008 0.004 20.006 20.018 20.004
Interteam interactions 20.002 0.006 20.001 20.011 0.008
Intrateam interactions2 0.000 0.002 0.000 20.003 0.005
Intrateam 3 Interteam interactions 0.006 0.004 0.005 0.002 0.014
Interteam interactions2 0.002 0.004 0.002 20.004 0.009
Team conflict –0.021 0.001 –0.021 –0.023 –0.020
a1 20.009 0.003 20.008 20.016 20.005
a2 0.009 0.002 0.008 0.007 0.013
a3 20.006 0.010 20.005 20.026 0.006
a4 20.004 0.007 20.002 20.017 0.005
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et al. (2020) demonstrated that while higher RSSI
values typically indicate devices being closer
together, there are a variety of factors that can impact
them (cubicle walls, clothing over the sensor, etc.).
Given these factors, RSSI values should be inter-
preted in terms of closer proximity or greater dis-
tance, rather than as precise measures of distance
(M€uller et al., 2020). We therefore examined a range
of RSSI values to examine the sensitivity of the find-
ings. Each table represents a single regression model,
linked to our primary Results section.We considered
a total of 23 threshold values, ranging from 291 to
269 (inclusive). Thus, each summary statistic in
Tables B1, B2, and B3 is based on a distribution of 23
parameter estimates extracted from separate models
run at these threshold values. The table summarizes
the distribution of t-values for each variable (i.e.,
parameter estimate divided by its standard error) in
the model across multiple RSSI threshold values.
Focal variables highlighted in our results section are
in bold font.

TABLE B3
Examining the Robustness of Table 5 Model 3 Predicting System Performance

Variable Mean SD Median Min. Max.

Intercept 0.934 0.003 0.936 0.928 0.938
System size 0.011 0.002 0.012 0.007 0.014
Team familiarity 20.074 0.007 20.078 20.082 20.063
Team performance 0.308 0.037 0.317 0.249 0.364
Team conflict 20.052 0.007 20.056 20.060 20.040
Intrateam interactions 0.001 0.007 20.002 20.005 0.025
Interteam interactions 0.022 0.004 0.022 0.017 0.028
Intrateam interactions2 20.040 0.003 20.040 20.051 20.038
Intrateam 3 Interteam interactions 0.018 0.008 0.014 0.008 0.033
Interteam interactions2 20.009 0.002 20.009 20.012 20.006
a1 0.023 0.008 0.022 0.013 0.041
a2 20.031 0.007 20.035 20.039 20.021
a3 20.021 0.008 20.024 20.029 0.008
a4 –0.068 0.011 –0.065 –0.091 –0.054
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