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This article provides an accessible introduction to recurrence analysis—an analytical
approach that has great promise for helping researchers understand group dynamics.
Recurrence analysis is a technique with roots in the systems dynamics literature that
was developed to reveal the properties of complex, nonlinear systems. By tracking
when a system visits similar states at multiple points in its life—and the form or pattern
of these recurrences over time—recurrence analysis equips researchers with a set of
new metrics for assessing the properties of group dynamics, such as recurrence rate
(i.e., stability), determinism (i.e., predictability), and entropy (i.e., complexity). Recent
work has shown the potential value of recurrence analysis across a number of different
disciplines. To extend its use within the domain of group dynamics, the authors present
a conceptual overview of the technique and give a step-by-step tutorial on how to use
recurrence analysis to study groups. An exemplar application of recurrence analysis
using dialogue-based data from 63 three-person student groups illustrates the use of
recurrence analysis in examining how groups change their focus on different processes
over time. This is followed by a discussion of variations of recurrence analysis and
implications for research questions within the literature on groups. When group
researchers track group processes or emergent states over time, and thus compile a time
series dataset, recurrence analysis can be a useful technique for measuring the prop-
erties of groups as dynamic systems.

Keywords: group dynamics, group processes, recurrence analysis, recurrence plots,
time-series data

There is a recurring pattern in the study of
groups. Scholars propose new conceptual mod-
els that underscore the dynamism inherent to
groups (e.g., Kozlowski, Gully, Nason, &

Smith, 1999; Marks, Mathieu, & Zaccaro, 2001;
McGrath, 1991; Tuckman, 1965). Shortly there-
after, commentaries lament the paucity of em-
pirical research on group dynamics (e.g., Ar-
row, McGrath, & Berdahl, 2000; Cronin,
Weingart, & Todorova, 2011; Kozlowski,
Chao, Chang, & Fernandez, 2016; McGrath,
1986). Among the reasons cited by commenta-
tors for this persistent gap are limitations in the
analytical tools group researchers are com-
monly taught and frequently employ. Ubiqui-
tous in the group literature are statistical ap-
proaches directly or indirectly grounded in the
general linear model—a model that, while pow-
erful, brings inherent limitations for understand-
ing change in groups over time. The general
linear model, which aligns well with the input-
process-output (I-P-O) conceptual model of
groups (e.g., Hackman, 1987), treats activity in
groups as a linear, delimited sequence of rela-
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tionships. Although both the general linear
model and the I-P-O model are useful and have
greatly advanced scholarship about groups,
these models may overly simplify the reality of
group dynamics.

Recognizing the limitations of conceptualiz-
ing group activity as a single, delimited se-
quence of inputs, processes, and outputs, more
recent conceptualizations portray groups as
transitioning through several interlocked activ-
ity cycles. For example, Marks et al. (2001)
argue that groups move through multiple per-
formance episodes. Each performance episode
is an I-P-O chain, with outputs of one episode
serving as inputs to the next episode. Other
recent models of group behavior (e.g., Ilgen,
Hollenbeck, Johnson, & Jundt, 2005; Kozlow-
ski & Ilgen, 2006; Mathieu, Maynard, Rapp, &
Gilson, 2008) similarly characterize groups as
moving through multiple cycles of activity over
time. Yet, the general linear model—and the
analytical mindset it provokes (Zyphur,
2009)—is ill-equipped to represent cycles of
group activity over time, especially if those
cycles contain feedback loops, recursion, or
nonlinear dynamics.

The purpose of this paper is to highlight and
demonstrate how to use a novel analytical ap-
proach—recurrence analysis—that is particu-
larly amenable to studying groups as cycles of
interlocked activity over time. Systems dynam-
ics scholars developed recurrence analysis to
assess and monitor changes in dynamic nonlin-
ear systems (Eckmann, Kamphorst, & Ruelle,
1987). Initially a graphical approach used to
illustrate patterns of recurrent activity in a sys-
tem over time, recurrence analysis has advanced
significantly over the past three decades (Mar-
wan, 2008). Correspondingly, its use has grown
dramatically, providing insights into a range of
research domains, such as the dynamics of hu-
man conversations (Dale & Spivey, 2006; Rich-
ardson & Dale, 2005), the ebb and flow of labor
markets (Caraiani & Haven, 2013), and the ac-
tivity of the human heart (González, Infante,
Pérez-Grovas, Jose, & Lerma, 2013).

Recurrence analysis is also a technique that
researchers have begun using to examine coor-
dination between pairs of people working to-
gether on a common task (e.g., Fusaroli &
Tylén, 2016; Shockley, Santana, & Fowler,
2003; Strang, Funke, Russell, Dukes, & Mid-
dendorf, 2014), shedding light on both the con-

ditions under which coordination emerges and
the implications of different dynamic structures.
Although few published studies have used re-
currence analysis to study groups composed of
more than two people (two exceptions are Fusa-
roli, Bjørndahl, Roepstorff, & Tylén, 2016 and
Gorman, Cooke, Amazeen, & Fouse, 2012), it
has great potential for illuminating new direc-
tions for theory and research on group dynamics
(Fusaroli, Konvalinka, & Wallot, 2014). By
providing an overview of recurrence analysis,
along with a group-focused tutorial, we make
the technique more accessible for group re-
searchers and aid efforts to fill the gap in em-
pirical research on group dynamics.

To highlight the potential value of recurrence
analysis, we first identify limitations of four
commonly used analytical approaches for
studying group dynamics. Then, we give a brief
historical background of recurrence analysis,
including an account of its conceptual founda-
tions, and discuss recent applications for under-
standing coordination. Next, we provide a step-
by-step demonstration of how time-series data
and recurrence analysis can be used to examine
group dynamics. We conclude by discussing
variations of recurrence analysis and broader
implications for researchers who study groups.

Four Common Analytical Approaches to
the Study of Groups

Four basic analytical approaches are preva-
lent in group research. Each one makes impor-
tant assumptions that may limit researchers
seeking to study groups as interlocked cycles of
activity over time. To illustrate the approaches
and their limitations, consider a fictitious study
where groups completed a 1-hr laboratory task
and a researcher used observational methods to
rate group mood (i.e., the degree to which group
interactions are characterized by positive and
negative emotions) and information sharing
(i.e., the degree to which members exchange
unique information) on a minute-by-minute ba-
sis. The fictitious time-series dataset thus con-
sists of 60 ratings of mood and information
sharing for each group.

The first common approach that researchers
use to examine this type of data is to aggregate
the potentially dynamic ratings of focal con-
structs across time. The assumption underlying
this approach is that, at least for the observation
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period, the constructs of interest are not chang-
ing meaningfully. For the fictitious dataset, this
aggregation would lead to a single mood score
and a single information sharing score per
group, each represented by the average value
across the study period. While this approach
enables studying relationships among con-
structs (e.g., information sharing and mood),
aggregating observations over time precludes
addressing research questions that focus on dy-
namics, such as how mood and information
sharing might change over time as a function of
temporal milestones or other emergent states.

The second common approach used to ex-
amine time-series data is to separate con-
struct measurements across time, thereby ig-
noring any potentially meaningful linkages
attributable to the temporal sequence in which
they occur. With this approach, researchers
focus specifically on the co-occurrence or di-
rect causal relationship between two vari-
ables, rather than on changing patterns over
time. For the fictitious example, the relation-
ship of interest might be between information
sharing and mood at various points in time.
This approach, which eliminates the temporal
structure of the data (or vastly simplifies it), is
often used in experience sampling studies
(e.g., Totterdell, Kellett, Teuchmann, & Bri-
ner, 1998). As with aggregating data, this
approach precludes addressing research ques-
tions focused on group dynamics.

The third approach is to describe patterns of
change over time using qualitative methods. For
the fictitious example, a researcher might ob-
serve sequences of mood or information sharing
in a small number of groups and use qualitative
data to develop theory about how mood and/or
information sharing change over time. A de-
scriptive approach has yielded significant in-
sights into group dynamics, serving as the basis
for some of the most impactful models of de-
velopment and change over time in the group
literature (e.g., Bales, 1950; Gersick, 1988;
Tuckman, 1965). This approach, however, is
infeasible for deductive research using large
datasets. Instead, it is most useful for induc-
tively generating insights into group dynamics.

The fourth approach, which group re-
searchers are using with increased frequency,
is to linearize the trajectories of change in
focal constructs over time and use multilevel
modeling (e.g., Knight, 2015; Mathieu &

Rapp, 2009) or structural equation modeling
(e.g., Edmonds, Tenenbaum, Kamata, &
Johnson, 2009; Tasca & Lampard, 2012) to
estimate a variety of longitudinal models
(e.g., latent growth curve, latent change score
analysis). Although these models are flexible,
and can test complex and reciprocal relation-
ships, a key assumption that underlies these
models is that change trajectories are the
product of linear processes. In other words,
researchers using these models must assume
that the error terms in their models are inde-
pendent—what causes one variable to change
does not interact with what is causing another
variable to change. Importantly, this issue is
not one of fitting curvilinear change trajecto-
ries, which is indeed possible (e.g., adding a
quadratic term to represent curvilinear
change). Rather, this issue references the
kinds of processes that are assumed to under-
lie the dynamics being studied. Beyond this
important assumption, these longitudinal
models generally require researchers to re-
duce the complexity of a temporal dataset to
fit relatively simple patterns of change over
time. For the fictitious example, a researcher
would likely aggregate the 60 min-level data
points into four to six phase-level data points
to fit a linear, quadratic, or cubic trajectory.
Accordingly, although using multilevel or
structural equation modeling enables re-
searchers to study dynamics, using these
models requires reducing the true complexity
of change and assuming linear dynamics—an
assumption that may be untenable in group
research.

In sum, the analytical approaches commonly
used to study groups require that researchers
adopt a relatively simplistic view of the pro-
cesses that underlie group dynamics. These ap-
proaches lead researchers to ignore change, to
describe change qualitatively, or to assume that
change is the product of linear, rather than non-
linear, dynamics. Below, we describe recur-
rence analysis, an analytical approach that can
address these limitations and complement exist-
ing analytical tools in group research. Rather
than imposing linear dynamics on time-series
data, recurrence analysis provides researchers
with a way to assess the dynamic nature of
groups and, thus, offers a novel lens through
which to view group dynamics.
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Recurrence Analysis

Background and Conceptual Introduction

Recurrence analysis was originally designed
as a graphical technique for making sense of
complex system dynamics (Eckmann et al.,
1987). Having roots in complexity theory—a
tradition with a strong predilection for visualiz-
ing data to reveal the key features of nonlinear
systems (Gleick, 1997)—recurrence analysis
began as a sophisticated plot illustrating system
properties. Called a recurrence plot, the princi-
ple guiding Eckmann and his colleagues’ think-
ing in developing this visualization was that
seeing how a dynamic system recurs—how it
revisits similar states at different points in
time—might help shed light on its core proper-
ties. Early recurrence plots revealed, for exam-
ple, the unique patterns of recurrence that clas-
sic nonlinear systems, such as the Lornez and
Henon systems, make (see Gleick, 1997 for an
accessible overview of nonlinear dynamics, in-
cluding the properties of these classic systems).
By providing a way to quantify the properties of
dynamic systems, recurrence analysis offers
group researchers a new approach for empiri-
cally studying group dynamics. Rather than pre-
suming that such systems are linear, researchers
can use recurrence analysis to assess the degree
to which a system is, for example, stable, pre-
dictable, and complex.

Before discussing the mechanics of recur-
rence analysis, we first illustrate its conceptual
foundations using the example of a simple dy-
namic system—a train that runs along a West-
to-East track with 10 stations, stopping every 10
minutes at the next station in sequence. When
the train reaches the end of the line, it reverses
course and continues running. A time-series da-
taset containing two variables—time and the
location of the train—could be used as the basis
of a recurrence plot. Figure 1A displays a stan-
dard time-series plot for a typical day, in which
the train runs between 5 a.m. and 11 p.m. The
x-axis in Figure 1A represents time of day and
the y-axis represents the location of the train.
Figure 1B displays a recurrence plot of the same
data. In the recurrence plot both axes now rep-
resent time of day. A dot in Figure 1B indicates
two points in time when the train is at the same
station. Which specific station is not specified in
the recurrence plot; however, the pattern of dots

immediately reveals the periodic and determin-
istic nature of the dynamic system. Note that a
recurrence plot of a single system—sometimes
called an autorecurrence plot—is symmetric
across the diagonal. Further, the diagonal in a plot
of a single system will always be marked as re-
current. This simple example illustrates the key
building block of recurrence analysis—the idea
that marking when a system is in the same state at
two points in time sheds light on the nature of its
dynamics.

As this example shows, a recurrence plot can
be constructed to represent the dynamics of a
single system across a delimited period of time.
Using the plot, researchers can derive metrics
that represent various properties of the system.
This extension of the plot is called recurrence
quantification analysis. The evolution of social
network analysis is a useful analogy for under-
standing this extension of recurrence plots. Ini-
tial social network research relied on network
graphs—visual displays of nodes (e.g., people)
and edges (e.g., friendship ties). Contemporary
network research, however, uses sophisticated
metrics that quantify properties of network
graphs (Wasserman & Faust, 1994). Like quan-
tifying networks, quantifying recurrence plots is
useful because it facilitates studying several
groups to test predictions about how and why
groups differ from one another in their dynam-
ics. Using metrics from recurrence quantifica-
tion analysis applied to multiple recurrence
plots (i.e., one plot per group), researchers can
operationalize properties of group dynamics—
such as the propensity of the system to recur or
how deterministic the system is—and use the
values in subsequent analyses. We describe in
detail below three measures based on recurrence
plots that may be particularly relevant for re-
searchers who study group dynamics. Before
doing so, however, we share three examples of
how researchers have recently used recurrence
analysis to understand interpersonal dynamics.

Using Recurrence Analysis to Study
Interpersonal Dynamics

To begin illustrating how recurrence analysis
provides group researchers with a novel perspec-
tive on group dynamics, we review how three
recent articles used recurrence analysis to under-
stand the dynamics of interpersonal interactions
among people engaged in cooperative tasks.
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Figure 1. Plots of a fictitious train system. (A) Traditional time-series plot. (B) Recurrence
plot.
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These articles show how the metrics derived from
recurrence analysis can be used in different ways
to assess the nature of group dynamics. And these
articles show how recurrence analysis can be in-
tegrated with a researcher’s existing analytical
toolset (e.g., general linear model) to test theoret-
ically meaningful questions about group dynam-
ics. Table 1 summarizes key aspects of how these
selected articles use recurrence analysis to study
interpersonal dynamics.

First, Gorman et al. (2012) used recurrence
analysis to understand how communication dy-
namics differ among the members of three-person
groups that retain stable membership across per-
formance episodes, compared to those that change
membership across performance episodes. Gor-
man et al. (2012) collected communication pat-
terns among group members operating uninhab-
ited air vehicles using the recordings of push-to-
talk devices that marked which group member
communicated at a given point in time and the
target of communication (i.e., either or both of the
other group members). The sequence of commu-
nications thus provided a time-series dataset re-
cording the communication state of the group over
time. Gorman et al. (2012) used recurrence quan-
tification analysis to measure how structured or
patterned the communication dynamics in groups
were. Integrating recurrence-based measures into
subsequent analyses showed that communication
dynamics tended to increase more in predictability
across performance episodes in intact groups than
in groups that experienced membership change.
Gorman et al.’s (2012) analyses illustrate the po-
tential value of recurrence analysis for assessing
how predictable, or deterministic, communication
dynamics are in groups—a characteristic that is
likely associated with aspects of coordination that
are of interest to group researchers.

Second, Strang et al. (2014) used a variation
of recurrence analysis—cross recurrence anal-
ysis—to examine questions about coordination
and performance in dyads engaged in a cooper-
ative video game task. As we discuss in greater
detail below, cross recurrence analysis is a vari-
ant of recurrence analysis that examines the
dynamic interplay of two systems—in this case,
of two people—over time. Strang et al. (2014)
used metrics from cross recurrence analysis to
measure the degree of coupling, or synchrony,
in dyad members’ physiology (i.e., cardiac in-
terbeat intervals) and behavior (i.e., postural
sway). By comparing the dynamics of a true

dyad (i.e., two people who did work together) to
that of a random dyad (i.e., two people who did
not work together), Strang et al. (2014) showed
that coupling emerges during collective work.
Further, the authors related recurrence metrics
to survey measures (e.g., cohesion) and perfor-
mance, providing evidence for the benefits of
complementary coupling. Strang et al.’s (2014)
results show the value of using nonlinear meth-
ods like recurrence analysis for assessing with-
in-group coupling—a phenomenon that also is
likely associated with coordination in groups.

Third, Fusaroli and Tylén (2016) used both
recurrence analysis and cross recurrence analy-
sis in a study of dyadic conversational dynamics
and performance on a joint decision-making
task. They created time series datasets with at-
tributes representing three different characteris-
tics of conversation between dyad members
(i.e., lexical choice, prosody, speech/pause
rhythm). The authors used recurrence analysis
to assess the structural organization of conver-
sation over time. By using recurrence analysis
on (a) the conversation stream of the dyad as a
whole, (b) on the dialog from each individual
member, and (c) cross recurrence analysis of the
dyad’s conversation, Fusaroli and Tylén (2016)
were able to test nuanced hypotheses about how
conversation dynamics relate to dyadic perfor-
mance. Results suggested that synergistic con-
versational patterns (e.g., complementarity) best
predict dyadic performance. As with the exam-
ples above, their findings illustrate the potential
value of recurrence analysis as a way to mea-
sure the dynamics of coordination, in this case
with a focus on dyadic dialogue.

These three selected examples suggest a range
of ways that recurrence analysis can be used to
assess the nature of group dynamics in novel and
theoretically meaningful ways. Of greatest rele-
vance for group researchers, these studies suggest
that recurrence analysis can provide a package of
metrics for assessing the dynamic structure of
group activity, which might then be related to
other group attributes and outcomes.

Illustrative Application and Tutorial

To further illustrate the potential value of recur-
rence analysis for studying group dynamics, as
well as to show specifically how to conduct recur-
rence analysis, we provide an exemplar applica-
tion and step-by-step tutorial focused on groups.
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In this tutorial we (a) highlight the major decision
points involved in conducting recurrence analysis,
(b) specify three metrics derived from a recur-
rence plot especially useful for group researchers,
and (c) illustrate how recurrence analysis can ad-
dress novel questions in the study of group dy-
namics. Several software packages, spanning
computing environments, exist for conducting re-
currence analysis (for an updated listing, see http://
www.recurrence-plot.tk/). For this tutorial, we di-
rectly calculated metrics using the formulas below
and the open source software environment R.

As a first and prerequisite step, a researcher
must formulate a research question that ad-
dresses group dynamics. Formulating this ques-
tion requires drawing from existing theories and
frameworks, perhaps adapting these to develop
hypotheses about groups as dynamic systems
that fluctuate over time. In this exemplar appli-
cation, we draw from Marks et al.’s (2001)
recurring phase model of groups, which sug-
gests that groups engage in transition processes
(e.g., planning, strategy formulation) and action
processes (e.g., monitoring goal cycles) and,
further, that cycles of transition and action pro-
cesses recur.

To illustrate a novel use of recurrence anal-
ysis, we examine whether two contextual fac-
tors might influence the dynamic structure of a
group’s pattern of processes over time. In par-
ticular, we focus on how the dynamic structure
of group processes may depend on (a) the me-
dium through which group members communi-
cate (face-to-face vs. computer-mediated) and
(b) whether group members are working to-
gether on a task for the first time (vs. a second
time). Because it offers the possibility to trans-
mit more information, we expect that groups’
dynamic structure will be more predictable and
complex when members communicate face-to-
face than via computer. Further, because group
members working together for a second time
already had the opportunity to learn and develop
routines, we expect that the dynamic structure
of group processes will be more predictable and
complex in groups’ second performance epi-
sode, compared to their first. Recurrence anal-
ysis facilitates examining these questions by
providing a way to assess dynamic structure.

The second step in using recurrence analysis
is to collect time-series data. Here the re-
searcher must decide on the variable(s), mea-
surement approach(es), measurement rate(s),

and time window for data collection. For this
exemplar application, we used discrete time-
series data from 63 three-person groups that
each completed two episodes of an intellective
laboratory task requiring them to solve a per-
sonnel scheduling problem (Kennedy & Mc-
Comb, 2014). Groups were randomly assigned
to one of two conditions—(a) a face-to-face
condition, in which group members met and
interacted in person to complete their task, and
(b) a computer-mediated condition, in which
group members met and interacted through a
computer platform to complete their task.
Group processes were assessed over time by
coding transcriptions of communications
among group members. Each discrete message
in the flow of group conversation was assigned
one of five codes, derived from Marks et al.’s
(2001) framework: (a) mission analysis, the for-
mulation of task objectives, resources, and work
parameters; (b) tactical strategy, the approach
for task execution; (c) operational strategy, the
approach to work allocation; (d) goal specifica-
tion, the prioritization of task goals; and (e)
action processes, those activities involved in
performing the task. This process yielded a se-
ries of discrete codes for each group, such as
“. . . (mission analysis) (mission analysis) (ac-
tion) . . .,” that reflects the message-to-message
progression of group processes across a perfor-
mance episode.1 In addition to these group pro-
cess codes, groups have a condition code (0 �
computer mediated, 1 � face to face) and a
performance episode code (0 � first episode,
1 � second episode).

The third step in a recurrence analysis is to
transform the time-series data for each group—
the ordered vector of group states over time—
into a recurrence plot. It is important to note that
each performance episode for each group is
treated as a distinct dynamic system. As such,
there is a distinct time series vector for each
group-episode and a distinct recurrence plot,
yielding a total of 126 plots for this sample
dataset. The plot is based on transforming the
time series vector into a recurrence matrix, Ri,j,
which is a matrix of 1s and 0s that indicates
when a system revisits a previous state. In this
example, because our data comprised a single

1 For more detail on the method and coding procedures,
see Kennedy and McComb (2014).
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vector of discrete states, the recurrence matrix
denotes when a group was engaged in the same
process at two points in time. Equation 1 below
specifies that a 1 is assigned when a group
process (e.g., mission analysis) is revisited at
another point in time; otherwise, a 0 is assigned.

Ri,j ��1 : xi � xj

0 : xi � xj
i, j � 1, . . . N, (1)

where N is the number of messages in the tran-
script and x represents the group process code at
message number i (or j). Figure 2 provides plots
for four sample groups. Visually, the plots sug-
gest that these groups progressed through two

phases of activity, with a transition at roughly
the midpoint of the communication transcripts.
The plots suggest that groups revisited pro-
cesses more during the second half of a perfor-
mance episode than during the first half.

Inspecting recurrence plots is informative;
however, it is difficult to derive precise conclu-
sions from many plots—in this example more
than a hundred. Accordingly, the fourth step in
recurrence analysis is to derive standardized
metrics that assess the dynamic structure de-
picted in each plot using recurrence quantifica-
tion analysis. We detail here the equations be-
hind three metrics that are useful for assessing
how predictable and complex a dynamic struc-
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Figure 2. Recurrence plots for four group performance episodes.
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ture is. Readers interested in other recurrence
metrics should consult Marwan, Carmen Ro-
mano, Thiel, and Kurths’ (2007) comprehensive
review of recurrence analysis.

The first measure—recurrence rate—as-
sesses how intensely a system revisits past
states and reflects the density of recurrences in
the plot. The recurrence rate is the proportion of
points in the plot that are recurrent states; that
is, the proportion of the plot that is filled with
black dots. Equation 2 details the calculation of
recurrence rate, which excludes the intrinsically
recurrent data points along the main diagonal of
the plot. Across the 126 performance episodes
in the sample (63 groups with 2 episodes each),
the mean recurrence rate is 53.61 (SD � 15.26),
indicating that groups, on average, revisit one of
the coded processes a little more than half of the
time during a single performance episode.

RR �
1

N2�i,j�1, i�j
N Ri,j (2)

The second measure—determinism—is
based on the arrangement of the points in the
recurrence plot and reflects the degree to which
system dynamics are predictable (i.e., determin-
istic). Determinism is evident in the presence of
diagonal line structures in the plot that run par-
allel to the main diagonal (Webber & Zbilut,
1994). These upward-running diagonal lines
mark periods when the system moves through a
series of identical states over time. Consider
again the train example depicted in Figure 1B.
This plot has many long diagonal lines because
the train system operates on a predetermined
schedule. A plot containing few diagonal lines,
in contrast, would suggest a more random dy-
namic process underlies the system. Determin-
ism is commonly operationalized as the propor-
tion of recurrent points in the plot that lie in a
diagonal parallel to the main diagonal (Marwan
et al., 2007; Webber & Zbilut, 1994). Calculat-
ing determinism requires first deciding how
many points are needed to constitute a line; this
is called the minimal line length, lmin (Marwan
et al., 2007). The data about l are then organized
into P(l), a frequency distribution. As Equation
3 shows, determinism is the ratio of recurrent
points found in a diagonal line of at least lmin to
the total number of recurrent points.

DET �
� l�lmin

N lP(l)

� i,j�1, i�j
N Ri,j

(3)

For this example, we set the minimal line
length to three recurrent data points (lmin � 3),
indicating periods when groups were focused
on the same process for at least three messages.
Determinism was high in this study (M � 89.80,
SD � 9.03), with nearly 90% of recurrences
typically falling in a diagonal line of three or
more points.

The third measure—entropy—provides an
indication of the complexity of the system’s
deterministic structure (Webber & Zbilut,
1994). An entropy measure derived from a re-
currence plot is based on the distribution of the
upward sloping diagonal line lengths (i.e., lines
parallel to the main diagonal; Marwan et al.,
2007) and reflects Shannon entropy. The train
example described above and depicted in Figure
1B has a very simple deterministic structure—
the train stops at stations in sequence every 10
min—and, thus, has low entropy. This is re-
flected in the fact that the diagonal lines in
Figure 1B are of relatively uniform length. A
plot with diagonal lines of many different
lengths, in contrast, would indicate high entropy
and a complex deterministic structure. Calculat-
ing entropy requires creating a probability dis-
tribution of diagonal line lengths, p(l). Then, as
detailed in Equation 4, entropy is calculated as
the Shannon entropy of the likelihood of a di-
agonal line being a given length in the plot. In
the sample dataset, average entropy was 2.74
(SD � 0.55).

ENTR � ��l�lmin

N p(l) ln p(l) (4)

The fifth step in recurrence analysis is to
examine focal research questions by relating
recurrence metrics to other variables, such as
contextual factors, group attributes, and out-
comes. In this example, we sought to examine
how two contextual characteristics—communi-
cation medium and performance episode—
relate to the dynamic structure of group pro-
cesses. We also examined the relationship
between recurrence metrics and group perfor-
mance on the personnel scheduling task. Table
2 provides descriptive statistics and intercorre-
lations among recurrence metrics and other
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variables. Because recurrence attributes might
be associated with the length of time that group
members worked together or to the total volume
of communication among group members, we
include these variables in Table 2 and in our
further analyses. The pattern of bivariate corre-
lations suggests, in line with our expectations,
that the dynamic structure of group processes
was more predictable and complex in face-to-
face groups (compared to computer-mediated)
and in groups engaged in their second perfor-
mance episode (compared to their first).

To examine our research questions more pre-
cisely, we tested these relationships using mul-
tilevel models (Gelman & Hill, 2007), which
account for the fact that performance episodes
in our dataset are nested within groups. In these
models we controlled for the amount of time (in
minutes) that group members worked on a given
episode and for the volume of their communi-

cation (in number of messages) and grand mean
centered continuous predictors. Table 3 presents
the results of models predicting the recurrence
metrics described above. As expected, groups
engaged in face-to-face communications had a
higher recurrence rate (B � 10.57, p � .01),
determinism (B � 5.75, p � .01), and entropy
(B � 0.24, p � .01) than did groups engaged in
computer-mediated communications. And
groups in their second performance episode had
a higher recurrence rate (B � 9.66, p � .01),
determinism (B � 6.45, p � .01), and entropy
(B � 0.24, p � .01) than did groups in their first
performance episode. Table 4 relates these met-
rics to group performance, which for this task
means producing a lower cost schedule. Model
1 of Table 4 shows that face-to-face groups
performed better than computer-mediated
groups (B � �102.85, p � .05) and that groups
performed better in their second episode than

Table 2
Descriptive Statistics and Intercorrelations Among Variables in Exemplar Application

Variable M SD 1 2 3 4 5 6 7

1. Session number .50 .50
2. Interaction medium .44 .50 .00
3. Number of messages 230.14 138.53 �.25 �.04
4. Minutes working 61.30 25.29 �.51 �.35 .42
5. Recurrence rate 53.61 15.26 .28 .36 .18 �.24
6. Determinism 89.80 9.03 .24 .28 .28 �.09 .71
7. Entropy 2.74 .55 .23 .16 .45 .02 .69 .70
8. Cost of schedule 2,763.41 315.07 �.81 �.13 .18 .41 �.29 �.33 �.23

Note. N � 126 performance episodes nested within 63 unique teams. For Session number, first episode � 0, second
episode � 1. For Interaction medium, computed mediated � 0 and face-to-face � 1.

Table 3
Results of Multilevel Models Predicting Recurrence Metrics

Variable Recurrence rate Determinism Entropy

Intercept 44.08 (2.38) 84.01 (1.38) 2.41 (.08)
Number of messages .03 (.01)�� .02 (.01)�� .00 (.00)
Minutes working �.04 (.06) .02 (.04) .00 (.00)
Session number 9.66 (2.47)�� 6.45 (1.66)�� .44 (.10)��

Interaction medium 10.57 (2.89)�� 5.75 (1.54)�� .24 (.09)��

Intercept 7.18 .00 .03
Residual 10.98 7.81 .45
AIC 1,011.24 891.84 200.00
Deviance 995.24 870.47 150.04

Note. N � 126 performance episodes nested within 63 unique teams. AIC � Akaike
information criterion. Entries are unstandardized coefficients and (standard errors). For
Session number, first episode � 0, second episode � 1. For Interaction medium, computer
mediated � 0 and face-to-face � 1.
�� p � .01.
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their first (B � �541.09, p � .01). Model 2 of
Table 4 shows that, with all three focal recur-
rence metrics in a regression model, a more
deterministic dynamic structure was associated
with the production of a lower cost schedule
(B � �6.02, p � .05). This indicates that, at
least for an intellective task such as this person-
nel scheduling one, more predictable group dy-
namics, reflected in higher determinism, are as-
sociated with better group performance.
Conversely, groups performed poorly when
their process dynamics were unpredictable.
These results suggest that more predictable
group dynamics, which are likely a reflection of
effective coordination, may facilitate the execu-
tion of intellective problem-solving tasks.

Note that although neither the recurrence rate
nor entropy were significant predictors in the
multivariate regression model, each of these
metrics had a bivariate relationship with cost of
schedule that was similar to that of determinism
(i.e., �0.29 for recurrence rate and �0.23 for
entropy). The nonsignificance of these metrics
in the regression model likely reflects their co-
variance with the relatively stronger predictor,
determinism. Each metric has the presence of
recurrences as its building blocks (i.e., the met-
rics share a common input) and, as such, the
metrics are relatively highly correlated with one
another.

This tutorial illustrates the potential of recur-
rence analysis for examining group dynamics in

novel ways. The results of our illustration, along
with studies of interpersonal dynamics (e.g.,
Fusaroli & Tylén, 2016; Shockley et al., 2003;
Strang et al., 2014), show that the metrics de-
rived from recurrence analysis are related to
contextual factors and group outcomes.

Variations and Extensions

Our illustration of recurrence analysis thus
far has intentionally highlighted its simplest
foundations to give readers an introduction to its
basic mechanics. As alluded to above, however,
there are a number of important variations of
and extensions to recurrence analysis. We high-
light here those that are likely most relevant for
groups researchers. Accounts of additional vari-
ations and issues to consider can be found in
Marwan et al. (2007) and Fusaroli et al. (2014).

Variations. Our illustrative application and
tutorial relied on a time-series dataset compris-
ing discrete states. Similar to our example of a
train running West-to-East, which stops in a
series of discrete stations, our tutorial treated
groups as moving discontinuously through a
series of discrete processes (e.g., mission anal-
ysis, action processes). Both of these examples
could, however, have used continuous indica-
tors. The train location, for instance, could have
been measured as kilometers from the origin
station. Or, a group’s state could have been
measured using a continuous indicator of how

Table 4
Results of Multilevel Models Predicting Cost of Schedule

Variable Model 1 Model 2

Intercept 3,079.66 (32.48) 3,414.66 (180.10)
Number of messages �.01 (.13) �.01 (.15)
Minutes working �1.14 (.87) �.98 (.87)
Session number �541.09 (34.58)�� �532.50 (38.16)��

Interaction medium �102.85 (39.09)� �88.50 (40.71)��

Recurrence rate .87 (1.70)
Determinism �6.02 (2.67)��

Entropy 54.32 (47.25)
Intercept 91.49 84.89
Residual 154.66 155.71
AIC 1,646.10 1,631.41
Deviance 1,656.28 1,650.79

Note. N � 126 performance episodes nested within 63 unique teams. AIC � Akaike
information criterion. Entries are unstandardized coefficients and (standard errors). For
Session number, first episode � 0, second episode � 1. For Interaction medium, computer
mediated � 0 and face-to-face � 1.
� p � .05. �� p � .01.
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much a group was engaged in a particular ac-
tivity. Such operationalizations of group states
using continuous indicators are very common in
group research. Fortunately, recurrence analysis
can easily accommodate continuous data. As
detailed in Table 1, two of the three selected
studies reviewed above—Strang et al. (2014)
and Fusaroli and Tylén (2016)—used recur-
rence analysis with continuous indicators of a
system’s state over time. Using continuous data,
however, introduces a complication to recur-
rence analysis—what is the threshold for mark-
ing an event as recurrent? That is, how close
should two states be in the life of the system to
be considered recurrent? Scholars have sug-
gested a number of different approaches for
deciding how to set this parameter, which is
called the recurrence threshold or the radius.
The decision, fundamentally, depends on the
specific questions that a researcher is trying to
answer with recurrence analysis (Marwan et al.,
2007). Marwan (2011) provides a useful discus-
sion of the factors to consider when choosing a
threshold for recurrence analysis.

A second variation in conducting recurrence
analysis that we have thus far overlooked is
phase-space embedding. Phase space is a con-
cept in physics that reflects the multiple dimen-
sions that are needed to truly represent a dy-
namic system at a given point in time. In the
train example above, only one dimension was
used to reflect the state of the system—its loca-
tion. However, the true state of the train at any
given point in time comprises many more di-
mensions. The train is at a given altitude, for
example, and is traveling at a given speed.
While a researcher may measure only one di-
mension of a system over time (e.g., a focal
process or emergent state), it is possible to
represent the system in many more dimensions
using what is called phase-space embedding. A
major development in systems dynamics oc-
curred when Takens (1981) showed that one
could use a single dimension of a system to
embed the system in phase space through time-
delayed embedding. Time-delayed embedding
entails unfolding a single time-series into mul-
tiple time-lagged dimensions. Conducting
phase-space embedding involves making a
number of additional decisions, such as select-
ing the most appropriate time lag and the num-
ber of dimensions needed to adequately repre-
sent the system. Because the choice of these

parameters can influence recurrence metrics
(Marwan, 2011), readers should consult Web-
ber and Zbilut (2005) and Marwan et al. (2007)
for detailed guidance on decision criteria.

Extensions. Our tutorial of recurrence
analysis above illustrates one particular kind of
recurrence analysis— called autorecurrence
analysis because it is an analysis of the recur-
rence of a single system’s state. We illustrated
this type of recurrence analysis because it is the
foundation upon which several extensions of
recurrence analysis are built. We highlight here
three extensions to this basic recurrence analy-
sis that enable researchers to (a) examine the
interplay of two systems, and (b) understand
how dynamic structure might, itself, change
over time.

Cross recurrence analysis, which we alluded
to above, was developed to address questions
regarding the degree to which the dynamics of
two systems—two groups or two members of a
single group, for example—converge and di-
verge over time. Considering the train example
above, cross recurrence analysis would chart the
progression of two trains, marking when one
train visited a station that the other had also
visited. Because cross recurrence analysis fo-
cuses on two systems, two time-series datasets
are necessary. We described above Strang et
al.’s (2014) research on physiological and be-
havioral coupling among dyad members en-
gaged in a video game task. Each dyad member
generates a time-series dataset, recording his or
her state over the course of time. Rather than
charting a single person’s state against itself at
different points in time (i.e., autorecurrence),
cross recurrence analysis charts one person’s
state against the other’s over time, marking
when one person is in the same state as the other
is or has been. Cross recurrence plots retain the
same properties of basic autorecurrence plots
and can be similarly quantified. The metrics that
stem from a cross recurrence plot, however,
reflect shared system properties, such as syn-
chronization or entrainment. Cross recurrence
analysis offers tremendous potential for under-
standing group dynamics. Researchers could
use this technique on internal group dynamics to
understand why some group members converge
more than others or on external group dynamics
to understand how a group becomes entrained to
external factors. Two articles that provide a
focused introduction to the use of cross recur-
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rence analysis are Fusaroli et al. (2014) and
Coco and Dale (2014).

Joint recurrence analysis is a mix of autore-
currence analysis and cross recurrence analysis.
In joint recurrence analysis, a researcher first
charts the recurrences of a single system, then
repeats this process with a second system. The
two recurrence matrices are then integrated to
reveal the times when the two systems simulta-
neously exhibit a recurrence. Considering again
the example of two trains, joint recurrence anal-
ysis would chart when the trains simultaneously
reach a station that each had already visited.
Joint recurrence analysis might be particularly
useful for assessing synchronization between
interacting systems (i.e., systems that can
jointly influence one another) (Marwan et al.,
2007). A group researcher might, for example,
examine the degree to which group members
synchronize their activities during face-to-face
interactions.

Windowed recurrence analysis is an exten-
sion that can be used with any kind of recur-
rence analysis (e.g., autorecurrence, cross recur-
rence). In the tutorial above, we calculated
recurrence metrics across the entirety of each
performance episode for each group. This
yielded a single value for each of the recurrence
metrics for each group and each episode. Win-
dowed recurrence analysis, however, enables
calculating recurrence metrics for subsets of
time within each recurrence plot (Webber &
Zbilut, 2005). Examining metrics across win-
dows within a recurrence plot sheds light on
how the structure of system dynamics changes
over time. To illustrate the potential value of
windowed analysis using our tutorial dataset,
we divided the time series for each group and
each performance episode into 10 equal win-
dows, allowing each window to overlap with
the next by 20%. Then, we conducted a recur-
rence analysis on each of the 10 subset win-
dows, calculating recurrence rate, determinism,
and entropy. This yielded, for each performance
episode, 10 observations of output (i.e., one set
of metrics per window of time). Figure 3 depicts
the average values from our sample of recur-
rence metrics across these 10 windows of time
within a performance episode. On average, each
metric increases over the course of a perfor-
mance episode, revealing that dynamic structure
becomes increasingly predictable and complex.
Windowed recurrence analysis could be a pow-

erful tool for group researchers seeking to test
hypotheses about how group dynamics change
over the course of a time-delimited performance
episode. For example, the output of a windowed
recurrence analysis could be used with growth
models to test whether some groups become
more deterministic faster than others over the
course of a performance episode.

Implications for Research on Group
Dynamics

Recurrence analysis, as this introduction to
its conceptual foundations and basic mechanics
shows, offers a different analytical mindset for
thinking about group dynamics. Growing out of
the systems dynamics literature, which for de-
cades has wrestled with the challenges of non-
linear systems, recurrence analysis is a tech-
nique unencumbered by the assumptions of
traditional analytical techniques in group re-
search, such as the general linear model and
growth modeling. As the exemplar application
above shows, recurrence analysis is a technique
that shares commonalities with the qualitative,
descriptive approaches researchers have histor-
ically used in longitudinal process-focused
group research (e.g., Gersick, 1988, 1989). And
yet, by focusing on patterns of recurrent activ-
ity, recurrence analysis offers group researchers
a novel perspective for testing existing theories
using time-series data and developing new the-
ories of group dynamics. Whereas current ana-
lytical approaches emphasize the content of
group activities over time, a recurrence analysis
approach emphasizes the structure of group ac-
tivities over time. Considering structure, along-
side content, can enrich scholars’ understanding
of how groups and their members change over
time.

For example, a core proposition underlying
Gersick’s (1988, 1989, 1991) punctuated equi-
librium model is that groups undergo phase
transitions when faced with a deadline. Further,
Gersick’s model makes predictions about when
these transitions are especially likely to occur
(e.g., at the temporal midpoint of a time-
delimited project) and how the actual timing of
transitions might relate to group effectiveness.
Although a number of researchers have used
quantitative methods to examine transitions in
teams (e.g., Knight, 2015; Okhuysen & Waller,
2002; Seers & Woodruff, 1997; Waller,
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Zellmer-Bruhn, & Giambatista, 2002; Woolley,
1998, 2009), analyses of transitions have nec-
essarily been indirect. Because analytical mod-
els commonly used in group research presume
continuous change over time, they are ill-
equipped for detecting truly discontinuous
change over time. As such, researchers have
made comparisons between different marked
phases of activity rather than using nonlinear
methods to detect phase shifts. Recurrence anal-
ysis offers ways to measure how a group’s
dynamic structure is changing over time and,
thus, could be used to more precisely identify
when transitions occur within groups. Using

this new approach, researchers could revisit old
questions about group task pacing and better
understand the timing and implications of phase
transitions in groups.

Recurrence analysis is an approach that is
also likely to be useful for addressing existing
questions about groups and entrainment. The
idea that the timing of external events can in-
fluence individuals, groups, and organizations is
central to an open systems perspective (e.g.,
Ancona & Chong, 1996; McGrath & Rotchford,
1983). Ancona and Chong (1999) proposed that
group dynamics are sensitive to temporal as-
pects of the overarching environment, such as
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Figure 3. Example of windowed recurrence quantification analysis: average metrics across
windows.
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the pace and rhythm of events, as well as to the
cyclical nature of events (e.g., organizational
budgetary cycles). Reflecting an open systems
perspective, they defined entrainment as “the
adjustment of the pace or cycle of an activity to
match or synchronize with that of another ac-
tivity” (Ancona & Chong, 1999, p. 251). Ideas
about entrainment have been particularly diffi-
cult to test in group research because existing
quantitative methods do not easily accommo-
date assessing synchrony or measuring cyclical
dynamics. As described above, however, recur-
rence analysis provides ways to measure dy-
namic structure over time. Further, extensions
of recurrence analysis, like cross recurrence
analysis, offer ways to measure the degree to
which two systems are coupled. With cross re-
currence analysis, researchers could directly test
old and new ideas about the causes and conse-
quences of group entrainment with external en-
vironmental pacers.

Related to both phase transitions and entrain-
ment, recurrence analysis may also be useful to
researchers studying questions about the emer-
gence of collective phenomena in groups and
teams. As a number of scholars have recently
underscored, empirical research on the dynam-
ics of emergence—the dynamic interactions
among lower-level entities (e.g., individual
group member affect) that over time lead to
higher-level phenomena (e.g., group affect)—is
notably lacking (e.g., Cronin et al., 2011; Koz-
lowski, Chao, Grand, Braun, & Kuljanin, 2013).
One potential reason for this gap is the inability
of existing analytical models used in organiza-
tional research to reflect the dynamic processes
of lower-level units combining and interacting
to form collective properties. A number of re-
cent articles have shown that recurrence analy-
sis can be useful for understanding the emer-
gence of coordination in dyads (e.g., Fusaroli &
Tylén, 2016; Strang et al., 2014). And our illus-
tration of windowed recurrence analysis (see
Figure 3) suggests that the dynamic structure of
a group of people working on a collaborative
task becomes increasingly predictable and com-
plex over time. One interpretation of this may
be that coordination and routines are emerging
in these groups to guide group members in
interacting with one another. Researchers study-
ing emergence—particularly those using large
datasets that track groups in real-time (e.g.,
Kozlowski et al., 2016)—will likely find tre-

mendous value in using recurrence analysis to
assess the dynamic structure of groups.

Beyond addressing existing theory and long-
standing research questions, recurrence analysis
may stimulate the development of novel theory
about group dynamics. A bidirectional relation-
ship exists between the analytical toolsets that
researchers possess and the theoretical accounts
that researchers can develop about group behav-
ior (Zyphur, 2009). Theoretical frameworks
guide the constructs researchers measure, when
and how they are measured, and the kinds of
relationships posited to exist among them.
Methodological and analytical mindsets, how-
ever, guide researchers’ thinking about what is
possible (Zyphur, 2009). Analytical mindsets
shape thinking about the very nature of con-
structs—what can a construct look like? And
analytical mindsets shape researchers’ thinking
about patterns or relationships that may exist
among constructs—is a system limited to se-
quential arrows, or are feedback loops possible?
The concepts measured by recurrence analy-
sis—such as how deterministic or complex the
structure of group dynamics are—lack clear an-
alogs in existing theory and research on groups.
Thinking, however, of groups as more or less
structured, and in more or less complex ways,
suggests intriguing avenues for research on
group dynamics. Why are some groups more
predictable in their patterns of activity than oth-
ers? Why do some groups have more complex
patterns of interactions than others? Theory is
needed to explore why some groups are more
deterministic or more complex than others and
how varying dynamic structures might relate to
group effectiveness. It may be that different
group designs (e.g., pooled interdependence, re-
ciprocal interdependence) provoke different
system dynamics. Or, perhaps the task a group
must tackle (e.g., creativity task, execution task)
shapes its system dynamics. Little is known
currently about the roles that determinism and
entropy play in the life of a group. Recurrence
analysis, and the analytical mindset that it pro-
vokes, may stimulate new theoretical directions
for conceptual models of group dynamics. Fur-
ther integration of this technique into the group
researcher’s toolbox may help break the recur-
ring cycle of commentators lamenting the lack
of empirical research on groups as dynamic
systems.
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